In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
,
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
,
electronics
Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
,
control systems engineering, and
statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, the frequency domain refers to the analysis of
mathematical function
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. ...
s or
signals with respect to
frequency
Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
(and possibly phase), rather than time, as in
time series
In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. ...
. While a
time-domain graph shows how a signal changes over time, a frequency-domain graph shows how the signal is distributed within different frequency bands over a range of frequencies. A complex valued frequency-domain representation consists of both the magnitude and the
phase of a set of
sinusoids (or other basis waveforms) at the frequency components of the signal. Although it is common to refer to the magnitude portion (the real valued frequency-domain) as the frequency response of a signal, the phase portion is required to uniquely define the signal.
A given function or signal can be converted between the time and frequency domains with a pair of mathematical
operators called
transforms. An example is the
Fourier transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
, which converts a time function into a complex valued sum or integral of
sine wave
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic function, periodic wave whose waveform (shape) is the trigonometric function, trigonometric sine, sine function. In mechanics, as a linear motion over time, this is ''simple ...
s of different frequencies, with amplitudes and phases, each of which represents a frequency component. The "
spectrum
A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
" of frequency components is the frequency-domain representation of the signal. The
inverse Fourier transform converts the frequency-domain function back to the time-domain function. A
spectrum analyzer is a tool commonly used to visualize
electronic signals in the frequency domain.
A frequency-domain representation may describe either a static function or a particular time period of a dynamic function (signal or system). The frequency transform of a dynamic function is performed over a finite time period of that function and assumes the function repeats infinitely outside of that time period. Some specialized signal processing techniques for dynamic functions use transforms that result in a joint
time–frequency domain, with the
instantaneous frequency response being a key link between the time domain and the frequency domain.
Advantages
One of the main reasons for using a frequency-domain representation of a problem is to simplify the mathematical analysis. For mathematical systems governed by
linear differential equation
In mathematics, a linear differential equation is a differential equation that is linear equation, linear in the unknown function and its derivatives, so it can be written in the form
a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b(x)
wher ...
s, a very important class of systems with many real-world applications, converting the description of the system from the time domain to a frequency domain converts the
differential equations to
algebraic equation
In mathematics, an algebraic equation or polynomial equation is an equation of the form P = 0, where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers.
For example, x^5-3x+1=0 is an algebraic equati ...
s, which are much easier to solve.
In addition, looking at a system from the point of view of frequency can often give an intuitive understanding of the qualitative behavior of the system, and a revealing scientific nomenclature has grown up to describe it, characterizing the behavior of physical systems to time varying inputs using terms such as
bandwidth,
frequency response
In signal processing and electronics, the frequency response of a system is the quantitative measure of the magnitude and Phase (waves), phase of the output as a function of input frequency. The frequency response is widely used in the design and ...
,
gain,
phase shift,
resonant frequencies,
time constant
In physics and engineering, the time constant, usually denoted by the Greek language, Greek letter (tau), is the parameter characterizing the response to a step input of a first-order, LTI system theory, linear time-invariant (LTI) system.Concre ...
,
resonance width,
damping factor,
Q factor
In physics and engineering, the quality factor or factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost ...
,
harmonic
In physics, acoustics, and telecommunications, a harmonic is a sinusoidal wave with a frequency that is a positive integer multiple of the ''fundamental frequency'' of a periodic signal. The fundamental frequency is also called the ''1st har ...
s,
spectrum
A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
,
power spectral density,
eigenvalue
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
s,
poles
Pole or poles may refer to:
People
*Poles (people), another term for Polish people, from the country of Poland
* Pole (surname), including a list of people with the name
* Pole (musician) (Stefan Betke, born 1967), German electronic music artist
...
, and
zeros.
An example of a field in which frequency-domain analysis gives a better understanding than time domain is
music
Music is the arrangement of sound to create some combination of Musical form, form, harmony, melody, rhythm, or otherwise Musical expression, expressive content. Music is generally agreed to be a cultural universal that is present in all hum ...
; the theory of operation of musical instruments and the
musical notation
Musical notation is any system used to visually represent music. Systems of notation generally represent the elements of a piece of music that are considered important for its performance in the context of a given musical tradition. The proce ...
used to record and discuss pieces of music is implicitly based on the breaking down of complex sounds into their separate component frequencies (
musical note
In music, notes are distinct and isolatable sounds that act as the most basic building blocks for nearly all of music. This musical analysis#Discretization, discretization facilitates performance, comprehension, and musical analysis, analysis. No ...
s).
Magnitude and phase
In using the
Laplace,
Z-, or Fourier transforms, a signal is described by a
complex function of frequency: the component of the signal at any given frequency is given by a
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
. The
modulus of the number is the
amplitude of that component, and the
argument
An argument is a series of sentences, statements, or propositions some of which are called premises and one is the conclusion. The purpose of an argument is to give reasons for one's conclusion via justification, explanation, and/or persu ...
is the relative phase of the wave. For example, using the
Fourier transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
, a
sound wave
In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid.
In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the ...
, such as human speech, can be broken down into its component tones of different frequencies, each represented by a sine wave of a different amplitude and phase. The response of a system, as a function of frequency, can also be described by a complex function. In many applications, phase information is not important. By discarding the phase information, it is possible to simplify the information in a frequency-domain representation to generate a
frequency spectrum
In signal processing, the power spectrum S_(f) of a continuous time signal x(t) describes the distribution of power into frequency components f composing that signal. According to Fourier analysis, any physical signal can be decomposed int ...
or
spectral density. A
spectrum analyzer is a device that displays the spectrum, while the time-domain signal can be seen on an
oscilloscope
An oscilloscope (formerly known as an oscillograph, informally scope or O-scope) is a type of electronic test instrument that graphically displays varying voltages of one or more signals as a function of time. Their main purpose is capturing i ...
.
Types
Although "''the''" frequency domain is spoken of in the singular, there are a number of different mathematical transforms which are used to analyze time-domain functions and are referred to as "frequency domain" methods. These are the most common transforms, and the fields in which they are used:
*
Fourier series
A Fourier series () is an Series expansion, expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems ...
– periodic signals,
oscillating systems.
*
Fourier transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
– aperiodic signals, transients.
*
Laplace transform
In mathematics, the Laplace transform, named after Pierre-Simon Laplace (), is an integral transform that converts a Function (mathematics), function of a Real number, real Variable (mathematics), variable (usually t, in the ''time domain'') to a f ...
–
electronic circuits
An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electric ...
and
control system
A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial ...
s.
*
Z transform
In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex valued frequency-domain (the z-domain or z-plane) representation.
It can be considered a disc ...
–
discrete-time
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled.
Discrete time
Discrete time views values of variables as occurring at distinct, separate "poi ...
signals,
digital signal processing
Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a ...
.
*
Wavelet transform — image analysis,
data compression
In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compressi ...
.
More generally, one can speak of the with respect to any transform. The above transforms can be interpreted as capturing some form of frequency, and hence the transform domain is referred to as a frequency domain.
Discrete frequency domain
A discrete frequency domain is a frequency domain that is
discrete
Discrete may refer to:
*Discrete particle or quantum in physics, for example in quantum theory
* Discrete device, an electronic component with just one circuit element, either passive or active, other than an integrated circuit
* Discrete group, ...
rather than
continuous.
For example, the
discrete Fourier transform
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced Sampling (signal processing), samples of a function (mathematics), function into a same-length sequence of equally-spaced samples of the discre ...
maps a function having a
discrete time domain into one having a discrete frequency domain. The
discrete-time Fourier transform
In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of discrete values.
The DTFT is often used to analyze samples of a continuous function. The term ''discrete-time'' refers ...
, on the other hand, maps functions with discrete time (
discrete-time signal
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled.
Discrete time
Discrete time views values of variables as occurring at distinct, separate "poi ...
s) to functions that have a continuous frequency domain.
A
periodic signal
A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a ''cycle''. For example, the ...
has energy only at a base frequency and its harmonics; thus it can be analyzed using a discrete frequency domain. A
discrete-time signal
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled.
Discrete time
Discrete time views values of variables as occurring at distinct, separate "poi ...
gives rise to a periodic frequency spectrum. In a situation where both these conditions occur, a signal which is discrete and periodic results in a frequency spectrum which is also discrete and periodic; this is the usual context for a
discrete Fourier transform
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced Sampling (signal processing), samples of a function (mathematics), function into a same-length sequence of equally-spaced samples of the discre ...
.
History of term
The use of the terms "frequency domain" and "
time domain
In mathematics and signal processing, the time domain is a representation of how a signal, function, or data set varies with time. It is used for the analysis of mathematical functions, physical signals or time series of economic or environmental ...
" arose in communication engineering in the 1950s and early 1960s, with "frequency domain" appearing in 1953. See
time domain: origin of term for details.
Earliest Known Uses of Some of the Words of Mathematics (T)
Jeff Miller, March 25, 2009
See also
* Bandwidth
* Blackman–Tukey transformation
* Fourier analysis
In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fo ...
for computing periodicity in evenly spaced data
* Least-squares spectral analysis
Least-squares spectral analysis (LSSA) is a method of estimating a Spectral density estimation#Overview, frequency spectrum based on a least-squares fit of Sine wave, sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the ...
for computing periodicity in unevenly spaced data
* Reciprocal space
Reciprocal lattice is a concept associated with solids with translational symmetry which plays a major role in many areas such as X-ray diffraction, X-ray and Electron diffraction, electron diffraction as well as the Electronic band structure, e ...
* Short-time Fourier transform
* Time–frequency representation
A time–frequency representation (TFR) is a view of a signal (taken to be a function of time) represented over both time and frequency. Time–frequency analysis means analysis into the time–frequency domain provided by a TFR. This is achieved ...
* Time–frequency analysis
* Wavelet
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the n ...
* Wavelet transform – digital image processing
Digital image processing is the use of a digital computer to process digital images through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over analog image processing. It allo ...
, signal compression Signal compression is the use of various techniques to increase the quality or quantity of signal parameters transmitted through a given telecommunications channel.
Types of signal compression include:
* Bandwidth compression
* Data compression
*D ...
References
Goldshleger, N., Shamir, O., Basson, U., Zaady, E. (2019). Frequency Domain Electromagnetic Method (FDEM) as tool to study contamination at the sub-soil layer. Geoscience 9 (9), 382.
Further reading
*.
*.
{{DEFAULTSORT:Frequency Domain
Frequency-domain analysis