In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a free module is a
module that has a ''basis'', that is, a
generating set
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to ...
that is
linearly independent
In the theory of vector spaces, a set of vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be . These concep ...
. Every
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
is a free module, but, if the
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
of the coefficients is not a
division ring
In algebra, a division ring, also called a skew field (or, occasionally, a sfield), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicativ ...
(not a
field in the
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
case), then there exist non-free modules.
Given any
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
and ring , there is a free -module with basis , which is called the ''free module on'' or ''module of formal'' -''linear combinations'' of the elements of .
A
free abelian group
In mathematics, a free abelian group is an abelian group with a Free module, basis. Being an abelian group means that it is a Set (mathematics), set with an addition operation (mathematics), operation that is associative, commutative, and inverti ...
is precisely a free module over the ring
of
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s.
Definition
For a
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
and an
-
module , the set
is a basis for
if:
*
is a
generating set
In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to ...
for
; that is to say, every element of
is a finite sum of elements of
multiplied by coefficients in
; and
*
is
linearly independent
In the theory of vector spaces, a set of vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be . These concep ...
: for every set
of distinct elements,
implies that
(where
is the zero element of
and
is the zero element of
).
A free module is a module with a basis.
An immediate consequence of the second half of the definition is that the coefficients in the first half are unique for each element of ''M''.
If
has
invariant basis number
In the mathematical field of ring theory, a ring ''R'' has the invariant basis number (IBN) property if all finitely generated free modules over ''R'' have a well-defined rank. In the case of fields, the IBN property is the fact that finite-dime ...
, then by definition any two bases have the same cardinality. For example, nonzero commutative rings have invariant basis number. The cardinality of any (and therefore every) basis is called the rank of the free module
. If this cardinality is finite, the free module is said to be ''free of finite rank'', or ''free of rank'' if the rank is known to be .
Examples
Let ''R'' be a ring.
* ''R'' is a free module of rank one over itself (either as a left or right module); any unit element is a basis.
* More generally, If ''R'' is commutative, a nonzero ideal ''I'' of ''R'' is free if and only if it is a
principal ideal
In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where ...
generated by a
nonzerodivisor, with a generator being a basis.
* Over a
principal ideal domain
In mathematics, a principal ideal domain, or PID, is an integral domain (that is, a non-zero commutative ring without nonzero zero divisors) in which every ideal is principal (that is, is formed by the multiples of a single element). Some author ...
(e.g.,
), a submodule of a free module is free.
* If ''R'' is commutative, the polynomial ring