Flight Deck, USS Point Cruz, San Diego Nov 1945
   HOME

TheInfoList



OR:

Flight or flying is the process by which an
object Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ai ...
moves through a
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
without contacting any
planetary surface A planetary surface is where the solid or liquid material of certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets (including ...
, either within an
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
(i.e. air flight or
aviation Aviation includes the activities surrounding mechanical flight and the aircraft industry. ''Aircraft'' includes fixed-wing and rotary-wing types, morphable wings, wing-less lifting bodies, as well as lighter-than-air craft such as hot air ...
) or through the
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
of
outer space Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, pred ...
(i.e.
spaceflight Spaceflight (or space flight) is an application of astronautics to fly spacecraft into or through outer space, either with or without humans on board. Most spaceflight is uncrewed and conducted mainly with spacecraft such as satellites in or ...
). This can be achieved by generating
aerodynamic lift A fluid flowing around an object exerts a force on it. Lift is the component of this force that is perpendicular to the oncoming flow direction. It contrasts with the drag force, which is the component of the force parallel to the flow direc ...
associated with
gliding Gliding is a recreational activity and competitive air sport in which pilots fly unpowered aircraft known as gliders or sailplanes using naturally occurring currents of rising air in the atmosphere to remain airborne. The word ''soaring'' is al ...
or propulsive thrust,
aerostat An aerostat (, via French) is a lighter-than-air aircraft that gains its lift through the use of a buoyant gas. Aerostats include unpowered balloons and powered airships. A balloon may be free-flying or tethered. The average density of the cra ...
ically using
buoyancy Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the p ...
, or by
ballistic Ballistics may refer to: Science * Ballistics, the science that deals with the motion, behavior, and effects of projectiles ** Forensic ballistics, the science of analyzing firearm usage in crimes ** Internal ballistics, the study of the proce ...
movement. Many things can fly, from animal aviators such as
bird Birds are a group of warm-blooded vertebrates constituting the class Aves (), characterised by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweigh ...
s,
bat Bats are mammals of the order Chiroptera.''cheir'', "hand" and πτερόν''pteron'', "wing". With their forelimbs adapted as wings, they are the only mammals capable of true and sustained flight. Bats are more agile in flight than most bi ...
s and
insect Insects (from Latin ') are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body ( head, thorax and abdomen), three pairs ...
s, to natural gliders/parachuters such as patagial animals,
anemochorous In Spermatophyte plants, seed dispersal is the movement, spread or transport of seeds away from the parent plant. Plants have limited mobility and rely upon a variety of dispersal vectors to transport their seeds, including both abiotic vectors, ...
seed A seed is an embryonic plant enclosed in a protective outer covering, along with a food reserve. The formation of the seed is a part of the process of reproduction in seed plants, the spermatophytes, including the gymnosperm and angiospe ...
s and ballistospores, to human inventions like aircraft (airplanes, helicopters, airships, balloons, etc.) and rockets which may propel spacecraft and spaceplanes. The engineering aspects of flight are the purview of aerospace engineering which is subdivided into aeronautics, the study of vehicles that travel through the atmosphere, and astronautics, the study of vehicles that travel through space, and ballistics, the study of the flight of projectiles.


Types of flight


Buoyant flight

Humans have managed to construct lighter-than-air vehicles that raise off the ground and fly, due to their
buoyancy Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the p ...
in air. An aerostat is a system that remains aloft primarily through the use of
buoyancy Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the p ...
to give an aircraft the same overall density as air. Aerostats include balloon (aircraft), free balloons, airships, and moored balloons. An aerostat's main structural component is its wikt:envelope, envelope, a lightweight skin that encloses a volume of lifting gas to provide
buoyancy Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the p ...
, to which other components are attached. Aerostats are so named because they use "aerostatic" lift, a buoyant force that does not require lateral movement through the surrounding air mass to effect a lifting force. By contrast, Aircraft#Heavier than air .E2.80.93 aerodynes, aerodynes primarily use aerodynamic lift (force), lift, which requires the lateral movement of at least some part of the aircraft through the surrounding air mass.


Aerodynamic flight


Unpowered flight versus powered flight

Some things that fly do not generate propulsive thrust through the air, for example, the flying squirrel. This is termed gliding (flight), gliding. Some other things can exploit rising air to climb such as Bird of prey, raptors (when gliding) and glider (sailplane), man-made sailplane gliders. This is termed Lift (soaring), soaring. However most other birds and all powered aircraft need a source of propulsion to climb. This is termed powered flight.


Animal flight

The only groups of Flying and gliding animals, living things that use powered flight are
bird Birds are a group of warm-blooded vertebrates constituting the class Aves (), characterised by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweigh ...
s,
insect Insects (from Latin ') are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body ( head, thorax and abdomen), three pairs ...
s, and
bat Bats are mammals of the order Chiroptera.''cheir'', "hand" and πτερόν''pteron'', "wing". With their forelimbs adapted as wings, they are the only mammals capable of true and sustained flight. Bats are more agile in flight than most bi ...
s, while many groups have evolved gliding. The extinct pterosaurs, an Order (biology), order of reptiles contemporaneous with the dinosaurs, were also very successful flying animals. Each of these groups' wings Convergent evolution, evolved independently, with insects the first animal group to evolve flight. The wings of the flying vertebrate groups are all based on the forelimbs, but differ significantly in structure; those of insects are hypothesized to be highly modified versions of structures that form gills in most other groups of arthropods.Averof, Michalis
"Evolutionary origin of insect wings from ancestral gills."
''Nature'', Volume 385, Issue 385, February 1997, pp. 627–630.
Bats are the only mammals capable of sustaining level flight (see ''bat flight''). However, there are several Flying squirrel, gliding mammals which are able to glide from tree to tree using fleshy membranes between their limbs; some can travel hundreds of meters in this way with very little loss in height. Flying frogs use greatly enlarged webbed feet for a similar purpose, and there are Draco blanfordii, flying lizards which fold out their mobile ribs into a pair of flat gliding surfaces. Chrysopelea, "Flying" snakes also use mobile ribs to flatten their body into an aerodynamic shape, with a back and forth motion much the same as they use on the ground. Flying fish can glide using enlarged wing-like fins, and have been observed soaring for hundreds of meters. It is thought that this ability was chosen by natural selection because it was an effective means of escape from underwater predators. The longest recorded flight of a flying fish was 45 seconds."BBC article and video of flying fish."
''BBC'', May 20, 2008. Retrieved: May 20, 2008.
Most
bird Birds are a group of warm-blooded vertebrates constituting the class Aves (), characterised by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweigh ...
s fly (''see bird flight''), with some exceptions. The largest birds, the ostrich and the emu, are earthbound flightless birds, as were the now-extinct dodos and the Phorusrhacids, which were the dominant predators of South America in the Cenozoic era. The non-flying penguins have wings adapted for use under water and use the same wing movements for swimming that most other birds use for flight. Most small flightless birds are native to small islands, and lead a lifestyle where flight would offer little advantage. Among living animals that fly, the wandering albatross has the greatest wingspan, up to ; the great bustard has the greatest weight, topping at . Most species of
insect Insects (from Latin ') are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body ( head, thorax and abdomen), three pairs ...
s can fly as adults. Insect flight makes use of either of two basic aerodynamic models: creating a leading edge vortex, found in most insects, and using clap and fling, found in very small insects such as thrips.


Mechanical

Mechanical flight is the use of a machine to fly. These machines include aircraft such as airplanes, glider aircraft, gliders, helicopters, autogyros, airships, balloon (aircraft), balloons, ornithopters as well as spacecraft. glider aircraft, Gliders are capable of unpowered flight. Another form of mechanical flight is para-sailing, where a parachute-like object is pulled by a boat. In an airplane, lift is created by the wings; the shape of the wings of the airplane are designed specially for the type of flight desired. There are different types of wings: tempered, semi-tempered, sweptback, rectangular and elliptical. An aircraft wing is sometimes called an airfoil, which is a device that creates lift when air flows across it.


=Supersonic

= Supersonic flight is flight faster than the speed of sound. Supersonic flight is associated with the formation of shock waves that form a sonic boom that can be heard from the ground, and is frequently startling. This shockwave takes quite a lot of energy to create and this makes supersonic flight generally less efficient than subsonic flight at about 85% of the speed of sound.


=Hypersonic

= Hypersonic flight is very high speed flight where the heat generated by the compression of the air due to the motion through the air causes chemical changes to the air. Hypersonic flight is achieved primarily by reentering spacecraft such as the Space Shuttle and Soyuz spacecraft, Soyuz.


Ballistic


Atmospheric

Some things generate little or no lift and move only or mostly under the action of momentum, gravity, air drag and in some cases thrust. This is termed ''ballistic flight''. Examples include balls, archery, arrows, bullets, fireworks etc.


Spaceflight

Essentially an extreme form of ballistic flight, spaceflight is the use of space technology to achieve the flight of spacecraft into and through
outer space Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, pred ...
. Examples include ballistic missiles, orbital spaceflight, etc. Spaceflight is used in space exploration, and also in commercial activities like space tourism and telecommunications satellite, satellite telecommunications. Additional non-commercial uses of spaceflight include Space observatory, space observatories, reconnaissance satellites and other Earth observation satellites. A spaceflight typically begins with a rocket launch, which provides the initial thrust to overcome the force of gravity and propels the spacecraft from the surface of the Earth. Once in space, the motion of a spacecraft—both when unpropelled and when under propulsion—is covered by the area of study called astrodynamics. Some spacecraft remain in space indefinitely, some disintegrate during atmospheric reentry, and others reach a planetary or lunar surface for landing or impact.


Solid-state propulsion

In 2018, researchers at Massachusetts Institute of Technology (MIT) managed to fly an aeroplane with no moving parts, powered by an "ionic wind" also known as electroaerodynamic thrust.


History

Many human cultures have built devices that fly, from the earliest projectiles such as stones and spears, the boomerang in Australia, the hot air Kongming lantern, and kites.


Aviation

George Cayley studied flight scientifically in the first half of the 19th century, and in the second half of the 19th century Otto Lilienthal made over 200 gliding flights and was also one of the first to understand flight scientifically. His work was replicated and extended by the Wright brothers who made gliding flights and finally the first controlled and extended, manned powered flights.


Spaceflight

Spaceflight, particularly human spaceflight became a reality in the 20th century following theoretical and practical breakthroughs by Konstantin Tsiolkovsky and Robert H. Goddard. The Sputnik 1, first orbital spaceflight was in 1957, and Yuri Gagarin was carried aboard the first manned orbital spaceflight in 1961.


Physics

There are different approaches to flight. If an object has a lower density than air, then it is buoyancy, buoyant and is able to aerostat, float in the air without expending energy. A heavier than air craft, known as an Aircraft#Heavier than air .80.93 aerodynes, aerodyne, includes flighted animals and insects, fixed-wing aircraft and rotorcraft. Because the craft is heavier than air, it must generate lift (force), lift to overcome its weight. The wind resistance caused by the craft moving through the air is called drag (physics), drag and is overcome by Air propulsion, propulsive thrust except in the case of gliding (flight), gliding. Some vehicles also use thrust for flight, for example rockets and Harrier jump jets. Finally, momentum dominates the flight of ballistic flying objects.


Forces

Forces relevant to flight are * Air propulsion, Propulsive thrust (except in gliders) * Lift (force), Lift, created by the reaction to an airflow * Drag (physics), Drag, created by aerodynamic friction * Weight, created by gravity * Buoyancy, for lighter than air flight These forces must be balanced for stable flight to occur.


Thrust

A fixed-wing aircraft generates forward thrust when air is pushed in the direction opposite to flight. This can be done in several ways including by the spinning blades of a Propeller (aircraft), propeller, or a rotating Mechanical fan, fan pushing air out from the back of a jet engine, or by ejecting hot gases from a rocket engine. The forward thrust is proportional to the mass of the airstream multiplied by the difference in velocity of the airstream. Reverse thrust can be generated to aid braking after landing by reversing the pitch of variable-pitch propeller blades, or using a Thrust reversal, thrust reverser on a jet engine. Rotary wing aircraft and thrust vectoring V/STOL aircraft use engine thrust to support the weight of the aircraft, and vector sum of this thrust fore and aft to control forward speed.


Lift

In the context of an fluid flow, air flow relative to a flying body, the lift force is the Vector (geometric)#Vector components, component of the aerodynamic force that is perpendicular to the flow direction. Aerodynamic lift results when the wing causes the surrounding air to be deflected - the air then causes a force on the wing in the opposite direction, in accordance with Newton's third law of motion. Lift is commonly associated with the wing of an Fixed-wing aircraft, aircraft, although lift is also generated by Helicopter rotor, rotors on rotorcraft (which are effectively rotating wings, performing the same function without requiring that the aircraft move forward through the air). While common meanings of the word "wikt:lift#English, lift" suggest that lift opposes gravity, aerodynamic lift can be in any direction. When an aircraft is cruise (flight), cruising for example, lift does oppose gravity, but lift occurs at an angle when climbing, descending or banking. On high-speed cars, the lift force is directed downwards (called "down-force") to keep the car stable on the road.


Drag

For a solid object moving through a fluid, the drag is the component of the Net force, net Aerodynamic force, aerodynamic or hydrodynamics, hydrodynamic force acting opposite to the direction of the movement."What is Drag?"
''NASA.'' Retrieved: May 6, 2012.
Therefore, drag opposes the motion of the object, and in a powered vehicle it must be overcome by thrust. The process which creates lift also causes some drag.


Lift-to-drag ratio

Aerodynamic lift is created by the motion of an aerodynamic object (wing) through the air, which due to its shape and angle deflects the air. For sustained straight and level flight, lift must be equal and opposite to weight. In general, long narrow wings are able deflect a large amount of air at a slow speed, whereas smaller wings need a higher forward speed to deflect an equivalent amount of air and thus generate an equivalent amount of lift. Large cargo aircraft tend to use longer wings with higher angles of attack, whereas supersonic aircraft tend to have short wings and rely heavily on high forward speed to generate lift. However, this lift (deflection) process inevitably causes a retarding force called drag. Because lift and drag are both aerodynamic forces, the ratio of lift to drag is an indication of the aerodynamic efficiency of the airplane. The lift to drag ratio is the L/D ratio, pronounced "L over D ratio." An airplane has a high L/D ratio if it produces a large amount of lift or a small amount of drag. The lift/drag ratio is determined by dividing the lift coefficient by the drag coefficient, CL/CD. The lift coefficient Cl is equal to the lift L divided by the (density r times half the velocity V squared times the wing area A). [Cl = L / (A * .5 * r * V^2)] The lift coefficient is also affected by the compressibility of the air, which is much greater at higher speeds, so velocity V is not a linear function. Compressibility is also affected by the shape of the aircraft surfaces. The drag coefficient Cd is equal to the drag D divided by the (density r times half the velocity V squared times the reference area A). [Cd = D / (A * .5 * r * V^2)] Lift-to-drag ratios for practical aircraft vary from about 4:1 for vehicles and birds with relatively short wings, up to 60:1 or more for vehicles with very long wings, such as gliders. A greater angle of attack relative to the forward movement also increases the extent of deflection, and thus generates extra lift. However a greater angle of attack also generates extra drag. Lift/drag ratio also determines the glide ratio and gliding range. Since the glide ratio is based only on the relationship of the aerodynamics forces acting on the aircraft, aircraft weight will not affect it. The only effect weight has is to vary the time that the aircraft will glide for – a heavier aircraft gliding at a higher airspeed will arrive at the same touchdown point in a shorter time.


Buoyancy

Air pressure acting up against an object in air is greater than the pressure above pushing down. The buoyancy, in both cases, is equal to the weight of fluid displaced - Archimedes' principle holds for air just as it does for water. A cubic meter of air at ordinary atmospheric pressure and room temperature has a mass of about 1.2 kilograms, so its weight is about 12 Newton (unit), newtons. Therefore, any 1-cubic-meter object in air is buoyed up with a force of 12 newtons. If the mass of the 1-cubic-meter object is greater than 1.2 kilograms (so that its weight is greater than 12 newtons), it falls to the ground when released. If an object of this size has a mass less than 1.2 kilograms, it rises in the air. Any object that has a mass that is less than the mass of an equal volume of air will rise in air - in other words, any object less dense than air will rise.


Thrust to weight ratio

Thrust-to-weight ratio is, as its name suggests, the ratio of instantaneous thrust to weight (where weight means weight at the Earth's standard acceleration g_0).Sutton and Biblarz 2000, p. 442. Quote: "thrust-to-weight ratio F/W0 is a dimensionless parameter that is identical to the acceleration of the rocket propulsion system (expressed in multiples of g0) if it could fly by itself in a gravity free vacuum." It is a dimensionless parameter characteristic of rockets and other jet engines and of vehicles propelled by such engines (typically space launch vehicles and jet aircraft). If the thrust-to-weight ratio is greater than the local gravity strength (expressed in ''g''s), then flight can occur without any forward motion or any aerodynamic lift being required. If the thrust-to-weight ratio times the lift-to-drag ratio is greater than local gravity then takeoff using aerodynamic lift is possible.


Flight dynamics

Flight dynamics is the science of aircraft, air and spacecraft, space vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of mass, known as ''pitch'', ''roll'' and ''yaw'' (See Tait-Bryan rotations for an explanation). The control of these dimensions can involve a horizontal stabilizer (i.e. "a tail"), ailerons and other movable aerodynamic devices which control angular stability i.e. flight attitude (which in turn affects altitude, Aircraft heading, heading). Wings are often angled slightly upwards- they have "positive Dihedral (aircraft), dihedral angle" which gives inherent roll stabilization.


Energy efficiency

To create thrust so as to be able to gain height, and to push through the air to overcome the drag associated with lift all takes energy. Different objects and creatures capable of flight vary in the efficiency of their muscles, motors and how well this translates into forward thrust. Propulsive efficiency determines how much energy vehicles generate from a unit of fuel.


Range

The range that powered flight articles can achieve is ultimately limited by their drag, as well as how much energy they can store on board and how efficiently they can turn that energy into propulsion. For powered aircraft the useful energy is determined by their fuel fraction- what percentage of the takeoff weight is fuel, as well as the specific energy of the fuel used.


Power-to-weight ratio

All animals and devices capable of sustained flight need relatively high power-to-weight ratios to be able to generate enough lift and/or thrust to achieve take off.


Takeoff and landing

Vehicles that can fly can have different ways to takeoff and land. Conventional aircraft accelerate along the ground until sufficient lift is generated for takeoff, and reverse the process for landing. Some aircraft can take off at low speed; this is called a short takeoff. Some aircraft such as helicopters and Harrier jump jets can take off and land vertically. Rockets also usually take off and land vertically, but some designs can land horizontally.


Guidance, navigation and control


Navigation

Navigation is the systems necessary to calculate current position (e.g. compass, GPS, LORAN, star tracker, inertial measurement unit, and altimeter). In aircraft, successful air navigation involves piloting an aircraft from place to place without getting lost, breaking the laws applying to aircraft, or endangering the safety of those on board or on the Earth, ground. The techniques used for navigation in the air will depend on whether the aircraft is flying under the visual flight rules (VFR) or the instrument flight rules (IFR). In the latter case, the aviator, pilot will navigate exclusively using flight instruments, instruments and radio navigation aids such as beacons, or as directed under radar control by air traffic control. In the VFR case, a pilot will largely navigate using dead reckoning combined with visual observations (known as pilotage), with reference to appropriate maps. This may be supplemented using radio navigation aids.


Guidance

A guidance system is a device or group of devices used in the navigation of a ship, aircraft, missile, rocket, satellite, or other moving object. Typically, guidance is responsible for the calculation of the vector (i.e., direction, velocity) toward an objective.


Control

A conventional fixed-wing aircraft flight control system consists of flight control surfaces, the respective cockpit controls, connecting linkages, and the necessary operating mechanisms to control an aircraft's direction in flight. Aircraft engine controls are also considered as flight controls as they change speed.


Traffic

In the case of aircraft, air traffic is controlled by air traffic control systems. Collision avoidance (spacecraft), Collision avoidance is the process of controlling spacecraft to try to prevent collisions.


Flight safety

Air safety is a term encompassing the theory, investigation and categorization of Aviation accidents and incidents, flight failures, and the prevention of such failures through regulation, education and training. It can also be applied in the context of campaigns that inform the public as to the safety of air travel.


See also

* Aerodynamics * Levitation * Transvection (flying)


References

;Notes ;Bibliography * Coulson-Thomas, Colin. ''The Oxford Illustrated Dictionary.'' Oxford, UK: Oxford University Press, 1976, First edition 1975, . * French, A. P. ''Newtonian Mechanics'' (The M.I.T. Introductory Physics Series) (1st ed.). New York: W. W. Norton & Company Inc., 1970. * Honicke, K., R. Lindner, P. Anders, M. Krahl, H. Hadrich and K. Rohricht. ''Beschreibung der Konstruktion der Triebwerksanlagen.'' Berlin: Interflug, 1968. * Sutton, George P. Oscar Biblarz. ''Rocket Propulsion Elements.'' New York: Wiley-Interscience, 2000 (7th edition). . * Walker, Peter. ''Chambers Dictionary, Chambers Dictionary of Science and Technology.'' Edinburgh: Chambers Harrap Publishers Ltd., 2000, First edition 1998. .


External links

* History and photographs of early aeroplanes etc.
'Birds in Flight and Aeroplanes' by Evolutionary Biologist and trained Engineer John Maynard-Smith
Freeview video provided by the Vega Science Trust. {{Authority control Flight, Aerodynamics Sky