HOME

TheInfoList



OR:

The discipline of
origami ) is the Japanese art of paper folding. In modern usage, the word "origami" is often used as an inclusive term for all folding practices, regardless of their culture of origin. The goal is to transform a flat square sheet of paper into a f ...
or paper folding has received a considerable amount of
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
study. Fields of interest include a given paper model's flat-foldability (whether the model can be flattened without damaging it), and the use of paper folds to solve up-to cubic mathematical equations. Computational origami is a recent branch of computer science that is concerned with studying algorithms that solve paper-folding problems. The field of computational origami has also grown significantly since its inception in the 1990s with Robert Lang's TreeMaker algorithm to assist in the precise folding of bases. Computational origami results either address origami design or origami foldability."Lecture: Recent Results in Computational Origami". ''Origami USA: We are the American national society devoted to origami, the art of paperfolding''. Retrieved 2022-05-08. In origami design problems, the goal is to design an object that can be folded out of paper given a specific target configuration. In origami foldability problems, the goal is to fold something using creases of an initial configuration. Results in origami design problems have been more accessible than in origami foldability problems.


History

In 1893, Indian civil servant T. Sundara Rao published ''
Geometric Exercises in Paper Folding ''Geometric Exercises in Paper Folding'' is a book on the mathematics of paper folding. It was written by Indian mathematician T. Sundara Row, first published in India in 1893, and later republished in many other editions. Its topics include paper ...
'' which used paper folding to demonstrate proofs of geometrical constructions. This work was inspired by the use of origami in the
kindergarten Kindergarten is a preschool educational approach based on playing, singing, practical activities such as drawing, and social interaction as part of the transition from home to school. Such institutions were originally made in the late 18th ce ...
system. Rao demonstrated an approximate trisection of angles and implied construction of a cube root was impossible. In 1922, Harry Houdini published "Houdini's Paper Magic," which described origami techniques that drew informally from mathematical approaches that were later formalized. In 1936 Margharita P. Beloch showed that use of the '
Beloch fold Beloch is a European surname. Notable people with the surname include: * Karl Julius Beloch (1854–1929), German classical and economic historian * Margherita Piazzola Beloch Margherita Beloch Piazzolla (12 July 1879, in Frascati – 28 Septe ...
', later used in the sixth of the Huzita–Hatori axioms, allowed the general
cubic equation In algebra, a cubic equation in one variable is an equation of the form :ax^3+bx^2+cx+d=0 in which is nonzero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of th ...
to be solved using origami. In 1949, R C Yeates' book "Geometric Methods" described three allowed constructions corresponding to the first, second, and fifth of the Huzita–Hatori axioms. The Yoshizawa–Randlett system of instruction by diagram was introduced in 1961. In 1980 was reported a construction which enabled an angle to be trisected. Trisections are impossible under Euclidean rules. Also in 1980, Kōryō Miura and Masamori Sakamaki demonstrated a novel map-folding technique whereby the folds are made in a prescribed parallelogram pattern, which allows the map to be expandable without any right-angle folds in the conventional manner. Their pattern allows the fold lines to be interdependent, and hence the map can be unpacked in one motion by pulling on its opposite ends, and likewise folded by pushing the two ends together. No unduly complicated series of movements are required, and folded ''Miura-ori'' can be packed into a very compact shape.. Reproduced in ''British Origami'', 1981, and online at the British Origami Society web site. In 1985 Miura reported a method of packaging and deployment of large membranes in outer space, and as early as 2012 this technique had been applied to
solar panels on spacecraft Spacecraft operating in the inner Solar System usually rely on the use of power electronics-managed photovoltaic solar panels to derive electricity from sunlight. Outside the orbit of Jupiter, solar radiation is too weak to produce sufficient pow ...
. In 1986, Messer reported a construction by which one could double the cube, which is impossible with Euclidean constructions. The first complete statement of the seven axioms of origami by French folder and mathematician Jacques Justin was written in 1986, but were overlooked until the first six were rediscovered by Humiaki Huzita in 1989.Justin, Jacques, "Resolution par le pliage de l'equation du troisieme degre et applications geometriques", reprinted in ''Proceedings of the First International Meeting of Origami Science and Technology'', H. Huzita ed. (1989), pp. 251–261. The first International Meeting of Origami Science and Technology (now known as the International Conference on Origami in Science, Math, and Education) was held in 1989 in Ferrara, Italy. At this meeting, a construction was given by Scimemi for the regular heptagon.Benedetto Scimemi, Regular Heptagon by Folding, Proceedings of Origami, Science and Technology, ed. H. Huzita., Ferrara, Italy, 1990 Around 1990, Robert J. Lang and others first attempted to write computer code that would solve origami problems. In 1996, Marshall Bern and Barry Hayes showed to be an
NP-complete In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying ...
problem the assignation of a crease pattern of mountain and valley folds in order to produce a flat origami structure starting from a flat sheet of paper. In 1999, a theorem due to Haga provided constructions used to divide the side of a square into rational fractions. In late 2001 and early 2002,
Britney Gallivan The discipline of origami or paper folding has received a considerable amount of mathematics, mathematical study. Fields of interest include a given paper model's flat-foldability (whether the model can be flattened without damaging it), and the u ...
proved the minimum length of paper necessary to fold it in half a certain number of times and folded a piece of toilet paper twelve times. In 2002,
belcastro Belcastro ( la, Bellicastrum; Calabrian: ) is a ''comune'' in the province of Catanzaro, in the Calabria region of southern Italy. History The small town of Belcastro is situated on a rocky spur crowned by a Norman-style castle that belonge ...
and Hull brought to the theoretical origami the language of
affine transformations In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, ...
, with an extension from R2 to R3 in only the case of single-vertex construction. In 2002, Alperin solved
Alhazen's problem Alhazen's problem, also known as Alhazen's billiard problem, is a mathematical problem in geometrical optics first formulated by Ptolemy in 150 AD. It is named for the 11th-century Arab mathematician Alhazen (''Ibn al-Haytham'') who presented a g ...
of spherical optics. In the same paper, Alperin showed a construction for a regular heptagon. In 2004, was proven algorithmically the fold pattern for a regular heptagon. Bisections and trisections were used by Alperin in 2005 for the same construction. In 2003, Jeremy Gibbons, a researcher from the University of Oxford, described a style of functional programming in terms of origami. He coined this paradigm as "origami programming." He characterizes fold and unfolds as natural patterns of computation over recursive datatypes that can be framed in the context of origami. In 2005, principles and concepts from mathematical and computational origami were applied to solve ''Countdown'', a game popularized in British television in which competitors used a list of source numbers to build an arithmetic expression as close to the target number as possible. In 2009, Alperin and Lang extended the theoretical origami to rational equations of arbitrary degree, with the concept of manifold creases. This work was a formal extension of Lang's unpublished 2004 demonstration of angle quintisection.


Pure origami


Flat folding

The construction of origami models is sometimes shown as crease patterns. The major question about such crease patterns is whether a given crease pattern can be folded to a flat model, and if so, how to fold them; this is an
NP-complete problem In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by tryi ...
. Related problems when the creases are orthogonal are called
map folding In the mathematics of paper folding, map folding and stamp folding are two problems of counting the number of ways that a piece of paper can be folded. In the stamp folding problem, the paper is a strip of stamps with creases between them, and the f ...
problems. There are three mathematical rules for producing flat-foldable origami
crease pattern A crease pattern is an origami diagram that consists of all or most of the creases in the final model, rendered into one image. This is useful for diagramming complex and super-complex models, where the model is often not simple enough to diagram e ...
s: # Maekawa's theorem: at any vertex the number of valley and mountain folds always differ by two. #: It follows from this that every vertex has an even number of creases, and therefore also the regions between the creases can be colored with two colors. # Kawasaki's theorem or Kawasaki-Justin theorem: at any vertex, the sum of all the odd angles adds up to 180 degrees, as do the even. # A sheet can never penetrate a fold. Paper exhibits zero
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . F ...
at all points on its surface, and only folds naturally along lines of zero curvature. Curved surfaces that can't be flattened can be produced using a non-folded crease in the paper, as is easily done with wet paper or a fingernail. Assigning a crease pattern mountain and valley folds in order to produce a flat model has been proven by Marshall Bern and Barry Hayes to be
NP-complete In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying ...
. Further references and technical results are discussed in Part II of '' Geometric Folding Algorithms''.


Huzita–Justin axioms

Some classical construction problems of geometry — namely trisecting an arbitrary angle or
doubling the cube Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related pro ...
— are proven to be unsolvable using
compass and straightedge In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
, but can be solved using only a few paper folds. Paper fold strips can be constructed to solve equations up to degree 4. The Huzita–Justin axioms or Huzita–Hatori axioms are an important contribution to this field of study. These describe what can be constructed using a sequence of creases with at most two point or line alignments at once. Complete methods for solving all equations up to degree 4 by applying methods satisfying these axioms are discussed in detail in '' Geometric Origami''.


Constructions

As a result of origami study through the application of geometric principles, methods such as Haga's theorem have allowed paperfolders to accurately fold the side of a square into thirds, fifths, sevenths, and ninths. Other theorems and methods have allowed paperfolders to get other shapes from a square, such as equilateral
triangles A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-collinear ...
,
pentagons In geometry, a pentagon (from the Greek language, Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is ...
,
hexagons In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
, and special rectangles such as the
golden rectangle In geometry, a golden rectangle is a rectangle whose side lengths are in the golden ratio, 1 : \tfrac, which is 1:\varphi (the Greek letter phi), where \varphi is approximately 1.618. Golden rectangles exhibit a special form of self-similarity ...
and the
silver rectangle Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical cond ...
. Methods for folding most regular polygons up to and including the regular 19-gon have been developed. A regular ''n''-gon can be constructed by paper folding
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bicondi ...
''n'' is a product of distinct
Pierpont prime In number theory, a Pierpont prime is a prime number of the form 2^u\cdot 3^v + 1\, for some nonnegative integers and . That is, they are the prime numbers for which is 3-smooth. They are named after the mathematician James Pierpont, who use ...
s,
powers of two A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer  as the exponent. In a context where only integers are considered, is restricted to non-negative ...
, and powers of three.


Haga's theorems

The side of a square can be divided at an arbitrary rational fraction in a variety of ways. Haga's theorems say that a particular set of constructions can be used for such divisions.K. Haga, Origamics, Part 1, Nippon Hyoron Sha, 1999 (in Japanese) Surprisingly few folds are necessary to generate large odd fractions. For instance can be generated with three folds; first halve a side, then use Haga's theorem twice to produce first and then . The accompanying diagram shows Haga's first theorem: :BQ = \frac. The function changing the length ''AP'' to ''QC'' is self inverse. Let ''x'' be ''AP'' then a number of other lengths are also rational functions of ''x''. For example:


A generalization of Haga's theorems

Haga's theorems are generalized as follows: :\frac = \frac. Therefore, BQ:CQ=k:1 implies AP:BP=k:2 for a positive real number k.


Doubling the cube

The classical problem of
doubling the cube Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related pro ...
can be solved using origami. This construction is due to Peter Messer: A square of paper is first creased into three equal strips as shown in the diagram. Then the bottom edge is positioned so the corner point P is on the top edge and the crease mark on the edge meets the other crease mark Q. The length PB will then be the cube root of 2 times the length of AP. The edge with the crease mark is considered a marked straightedge, something which is not allowed in
compass and straightedge constructions In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an ideali ...
. Using a marked straightedge in this way is called a
neusis construction In geometry, the neusis (; ; plural: grc, νεύσεις, neuseis, label=none) is a geometric construction method that was used in antiquity by Greek mathematicians. Geometric construction The neusis construction consists of fitting a line e ...
in geometry.


Trisecting an angle

Angle trisection Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge an ...
is another of the classical problems that cannot be solved using a compass and unmarked ruler but can be solved using origami. This construction, which was reported in 1980, is due to Hisashi Abe. The angle CAB is trisected by making folds PP' and QQ' parallel to the base with QQ' halfway in between. Then point P is folded over to lie on line AC and at the same time point A is made to lie on line QQ' at A'. The angle A'AB is one third of the original angle CAB. This is because PAQ, A'AQ and A'AR are three
congruent Congruence may refer to: Mathematics * Congruence (geometry), being the same size and shape * Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure * In mod ...
triangles. Aligning the two points on the two lines is another neusis construction as in the solution to doubling the cube.


Related problems

The problem of
rigid origami Rigid origami is a branch of origami which is concerned with folding structures using flat rigid sheets joined by hinges. That is, unlike in traditional origami, the panels of the paper cannot be bent during the folding process; they must remain ...
, treating the folds as hinges joining two flat, rigid surfaces, such as
sheet metal Sheet metal is metal formed into thin, flat pieces, usually by an industrial process. Sheet metal is one of the fundamental forms used in metalworking, and it can be cut and bent into a variety of shapes. Thicknesses can vary significantly; ex ...
, has great practical importance. For example, the
Miura map fold The is a method of folding a flat surface such as a sheet of paper into a smaller area. The fold is named for its inventor, Japanese astrophysicist Kōryō Miura. The crease patterns of the Miura fold form a tessellation of the surface by ...
is a rigid fold that has been used to deploy large solar panel arrays for space satellites. The
napkin folding problem The napkin folding problem is a problem in geometry and the mathematics of paper folding that explores whether folding a square or a rectangular napkin can increase its perimeter. The problem is known under several names, including the Margulis na ...
is the problem of whether a square or rectangle of paper can be folded so the perimeter of the flat figure is greater than that of the original square. The placement of a point on a curved fold in the pattern may require the solution of elliptic integrals. Curved origami allows the paper to form
developable surface In mathematics, a developable surface (or torse: archaic) is a smooth surface with zero Gaussian curvature. That is, it is a surface that can be flattened onto a plane without distortion (i.e. it can be bent without stretching or compression). ...
s that are not flat.
Wet-folding Wet-folding is an origami technique developed by Akira Yoshizawa that employs water to dampen the paper so that it can be manipulated more easily. This process adds an element of sculpture to origami, which is otherwise purely geometric. Wet-foldi ...
origami is a technique evolved by Yoshizawa that allows curved folds to create an even greater range of shapes of higher order complexity. The maximum number of times an incompressible material can be folded has been derived. With each fold a certain amount of paper is lost to potential folding. The
loss function In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost ...
for folding paper in half in a single direction was given to be L=\tfrac (2^n + 4)(2^n - 1), where ''L'' is the minimum length of the paper (or other material), ''t'' is the material's thickness, and ''n'' is the number of folds possible. The distances ''L'' and ''t'' must be expressed in the same units, such as inches. This result was derived by Britney Gallivan, a high schooler from
California California is a U.S. state, state in the Western United States, located along the West Coast of the United States, Pacific Coast. With nearly 39.2million residents across a total area of approximately , it is the List of states and territori ...
, in December 2001. In January 2002, she folded a piece of toilet paper twelve times in the same direction, debunking a long-standing myth that paper cannot be folded in half more than eight times. The fold-and-cut problem asks what shapes can be obtained by folding a piece of paper flat, and making a single straight complete cut. The solution, known as the fold-and-cut theorem, states that any shape with straight sides can be obtained. A practical problem is how to fold a map so that it may be manipulated with minimal effort or movements. The
Miura fold The is a method of folding a flat surface such as a sheet of paper into a smaller area. The fold is named for its inventor, Japanese astrophysicist Kōryō Miura. The crease patterns of the Miura fold form a tessellation of the surface by ...
is a solution to the problem, and several others have been proposed.


Computational origami

Computational origami is a branch of computer science that is concerned with studying algorithms for solving paper-folding problems. In the early 1990s, origamists participated in a series of origami contests called the Bug Wars in which artists attempted to out-compete their peers by adding complexity to their origami bugs. Most competitors in the contest belonged to the Origami Detectives, a group of acclaimed Japanese artists. Robert Lang, a research-scientist from
Stanford University Stanford University, officially Leland Stanford Junior University, is a private research university in Stanford, California. The campus occupies , among the largest in the United States, and enrolls over 17,000 students. Stanford is consider ...
and the
California Institute of Technology The California Institute of Technology (branded as Caltech or CIT)The university itself only spells its short form as "Caltech"; the institution considers other spellings such a"Cal Tech" and "CalTech" incorrect. The institute is also occasional ...
, also participated in the contest. The contest helped initialize a collective interest in developing universal models and tools to aid in origami design and foldability.


Research

Paper-folding problems are classified as either origami design or origami foldability problems. There are predominantly three current categories of computational origami research: universality results, efficient decision algorithms, and computational intractability results.Demaine, Erik (2001). "Recent Results in Computational Origami" (PDF). A universality result defines the bounds of possibility given a particular model of folding. For example, a large enough piece of paper can be folded into any tree-shaped origami base, polygonal silhouette, and polyhedral surface. When universality results are not attainable, efficient decision algorithms can be used to test whether an object is foldable in polynomial time. Certain paper-folding problems do not have efficient algorithms. Computational intractability results show that there are no such polynomial-time algorithms that currently exist to solve certain folding problems. For example, it is NP-hard to evaluate whether a given crease pattern folds into any flat origami. In 2017, Erik Demaine of the Massachusetts Institute of Technology and Tomohiro Tachi of the University of Tokyo published a new universal algorithm that generates practical paper-folding patterns to produce any 3-D structure. The new algorithm built upon work that they presented in their paper in 1999 that first introduced a universal algorithm for folding origami shapes that guarantees a minimum number of seams. The algorithm will be included in Origamizer, a free software for generating origami crease patterns that was first released by Tachi in 2008.


Software & tools

There are several software design tools that are used for origami design. Users specify the desired shape or functionality and the software tool constructs the fold pattern and/or 2D or 3D model of the result. Researchers at the
Massachusetts Institute of Technology The Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern technology and science, and is one of the ...
,
Georgia Tech The Georgia Institute of Technology, commonly referred to as Georgia Tech or, in the state of Georgia, as Tech or The Institute, is a public research university and institute of technology in Atlanta, Georgia. Established in 1885, it is part of ...
,
University of California Irvine The University of California, Irvine (UCI or UC Irvine) is a public land-grant research university in Irvine, California. One of the ten campuses of the University of California system, UCI offers 87 undergraduate degrees and 129 graduate and pr ...
,
University of Tsukuba is a public university, public research university located in Tsukuba, Ibaraki Prefecture, Ibaraki, Japan. It is a top 10 Designated National University, and was ranked Type A by the Japanese government as part of the Top Global University Pro ...
, and
University of Tokyo , abbreviated as or UTokyo, is a public research university located in Bunkyō, Tokyo, Japan. Established in 1877, the university was the first Imperial University and is currently a Top Type university of the Top Global University Project by ...
have developed and posted publicly available tools in computational origami. TreeMaker, ReferenceFinder, OrigamiDraw, and Origamizer are among the tools that have been used in origami design. There are other software solutions associated with building computational origami models using non-paper materials such as Cadnano in
DNA origami DNA origami is the nanoscale folding of DNA to create arbitrary two- and three-dimensional shapes at the nanoscale. The specificity of the interactions between complementary base pairs make DNA a useful construction material, through design of ...
.


Applications

Computational origami has contributed to applications in robotics, biotechnology & medicine, industrial design. Applications for origami have also been developed in the study of programming languages and programming paradigms, particular in the setting of functional programming. Robert Lang participated in a project with researchers at EASi Engineering in Germany to develop automotive airbag folding designs. In the mid-2000s, Lang worked with researchers at the
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States. The lab was originally established as the University of California Radiation Laboratory, Livermore Branch in 1952 in response ...
to develop a solution for the
James Webb Space Telescope The James Webb Space Telescope (JWST) is a space telescope which conducts infrared astronomy. As the largest optical telescope in space, its high resolution and sensitivity allow it to view objects too old, distant, or faint for the Hubble Spa ...
, particularly its large mirrors, to fit into a rocket using principles and algorithms from computational origami. In 2014, researchers at the Massachusetts Institute of Technology, Harvard University, and the Wyss Institute for Biologically Inspired Engineering published a method for building self-folding machines and credited advances in computational origami for the project's success. Their origami-inspired robot was reported to fold itself in 4 minutes and walk away without human intervention, which demonstrated the potential for autonomous self-controlled assembly in robotics. Other applications include
DNA origami DNA origami is the nanoscale folding of DNA to create arbitrary two- and three-dimensional shapes at the nanoscale. The specificity of the interactions between complementary base pairs make DNA a useful construction material, through design of ...
and RNA origami, folding of manufacturing instruments, and surgery by tiny origami robots. Applications of computational origami have been featured by various production companies and commercials. Lang famously worked with Toyota Avalon to feature an animated origami sequence, Mitsubishi Endeavor to create a world entirely out of origami figures, and McDonald's to form numerous origami figures from cheeseburger wrappers.


See also

*
Flexagon In geometry, flexagons are flat models, usually constructed by folding strips of paper, that can be ''flexed'' or folded in certain ways to reveal faces besides the two that were originally on the back and front. Flexagons are usually square or ...
*
Lill's method In mathematics, Lill's method is a visual method of finding the real roots of a univariate polynomial of any degree. It was developed by Austrian engineer Eduard Lill in 1867. A later paper by Lill dealt with the problem of complex roots. Lill ...
*
Napkin folding problem The napkin folding problem is a problem in geometry and the mathematics of paper folding that explores whether folding a square or a rectangular napkin can increase its perimeter. The problem is known under several names, including the Margulis na ...
*
Map folding In the mathematics of paper folding, map folding and stamp folding are two problems of counting the number of ways that a piece of paper can be folded. In the stamp folding problem, the paper is a strip of stamps with creases between them, and the f ...
*
Regular paperfolding sequence In mathematics the regular paperfolding sequence, also known as the dragon curve sequence, is an infinite sequence of 0s and 1s. It is obtained from the repeating partial sequence by filling in the question marks by another copy of the whole sequen ...
(for example, the
dragon curve A dragon curve is any member of a family of self-similar fractal curves, which can be approximated by recursive methods such as Lindenmayer systems. The dragon curve is probably most commonly thought of as the shape that is generated from repe ...
)


Notes and references


Further reading

* Demaine, Erik D.
"Folding and Unfolding"
PhD thesis, Department of Computer Science, University of Waterloo, 2001. * * * * * Dureisseix, David
"Folding optimal polygons from squares"
''Mathematics Magazine'' 79(4): 272–280, 2006. * Dureisseix, David
"An Overview of Mechanisms and Patterns with Origami"
''International Journal of Space Structures'' 27(1): 1–14, 2012.


External links

*
Paper Folding Geometry
at
cut-the-knot Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Math ...

Dividing a Segment into Equal Parts by Paper Folding
at
cut-the-knot Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Math ...

Britney Gallivan has solved the Paper Folding Problem

Overview of Origami Axioms


b
Mario Cigada
{{DEFAULTSORT:Mathematics Of Paper Folding Paper folding Origami Mathematics and art es:Matemáticas del origami