A nuclear isomer is a
metastable
In chemistry and physics, metastability denotes an intermediate Energy level, energetic state within a dynamical system other than the system's ground state, state of least energy.
A ball resting in a hollow on a slope is a simple example of me ...
state of an
atomic nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron i ...
, in which one or more
nucleon
In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number).
Until the 1960s, nucleons were ...
s (protons or neutrons) occupy
higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited states have
half-lives
Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
100 to 1000 times longer than the half-lives of the excited nuclear states that decay with a "prompt" half life (ordinarily on the order of 10
−12 seconds). The term "metastable" is usually restricted to isomers with half-lives of 10
−9 seconds or longer. Some references recommend 5 × 10
−9 seconds to distinguish the metastable half life from the normal "prompt"
gamma-emission half-life.
Occasionally the half-lives are far longer than this and can last minutes, hours, or years. For example, the
nuclear isomer survives so long (at least 10
15 years) that it has never been observed to decay spontaneously. The half-life of a nuclear isomer can even exceed that of the ground state of the same nuclide, as shown by as well as
,
,
and multiple
holmium isomers.
Sometimes, the
gamma decay
A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically sh ...
from a metastable state is referred to as isomeric transition, but this process typically resembles shorter-lived gamma decays in all external aspects with the exception of the long-lived nature of the meta-stable parent nuclear isomer. The longer lives of nuclear isomers' metastable states are often due to the larger degree of nuclear spin change which must be involved in their gamma emission to reach the ground state. This high spin change causes these decays to be
forbidden transition
In spectroscopy, a forbidden mechanism (forbidden transition or forbidden line) is a spectral line associated with absorption or emission of photons by atomic nuclei, atoms, or molecules which undergo a transition that is not allowed by a particul ...
s and delayed. Delays in emission are caused by low or high available decay energy.
The first nuclear isomer and decay-daughter system (uranium X
2/uranium Z, now known as /
) was discovered by
Otto Hahn
Otto Hahn (; 8 March 1879 – 28 July 1968) was a German chemist who was a pioneer in the fields of radioactivity and radiochemistry. He is referred to as the father of nuclear chemistry and father of nuclear fission. Hahn and Lise Meitner ...
in 1921.
Nuclei of nuclear isomers
The nucleus of a nuclear isomer occupies a higher energy state than the non-excited nucleus existing in the
ground state
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
. In an excited state, one or more of the protons or neutrons in a nucleus occupy a
nuclear orbital
In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model is a model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. The first shell mod ...
of higher energy than an available nuclear orbital. These states are analogous to excited states of electrons in atoms.
When excited atomic states decay, energy is released by
fluorescence
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
. In electronic transitions, this process usually involves emission of light near the
visible
Visibility, in meteorology, is a measure of the distance at which an object or light can be seen.
Visibility may also refer to:
* A measure of turbidity in water quality control
* Interferometric visibility, which quantifies interference contrast ...
range. The amount of energy released is related to
bond-dissociation energy
The bond-dissociation energy (BDE, ''D''0, or ''DH°'') is one measure of the strength of a chemical bond . It can be defined as the standard enthalpy change when is cleaved by homolysis to give fragments A and B, which are usually radical s ...
or
ionization energy
Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
and is usually in the range of a few to few tens of eV per bond. However, a much stronger type of
binding energy
In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
, the
nuclear binding energy
Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the atomic nucleus, nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable n ...
, is involved in nuclear processes. Due to this, most nuclear excited states decay by
gamma ray
A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
emission. For example, a well-known nuclear isomer used in various medical procedures is
, which decays with a half-life of about 6 hours by emitting a gamma ray of 140 keV of energy; this is close to the energy of medical diagnostic X-rays.
Nuclear isomers have long half-lives because their gamma decay is "forbidden" from the large change in
nuclear spin
In atomic physics, the spin quantum number is a quantum number (designated ) which describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. The phrase was originally used to describe th ...
needed to emit a gamma ray. For example, has a spin of 9 and must gamma-decay to with a spin of 1. Similarly, has a spin of 1/2 and must gamma-decay to with a spin of 9/2.
While most metastable isomers decay through gamma-ray emission, they can also decay through
internal conversion
Internal conversion is a non-radioactive, atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal ...
. During internal conversion, energy of nuclear de-excitation is not emitted as a gamma ray, but is instead used to accelerate one of the inner electrons of the atom. These excited electrons then leave at a high speed. This occurs because inner atomic electrons penetrate the nucleus where they are subject to the intense electric fields created when the protons of the nucleus re-arrange in a different way.
In nuclei that are far from stability in energy, even more decay modes are known.
After fission, several of the
fission fragments that may be produced have a metastable isomeric state. These fragments are usually produced in a highly excited state, in terms of energy and
angular momentum
In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
, and go through a prompt de-excitation. At the end of this process, the nuclei can populate both the ground and the isomeric states. If the half-life of the isomers is long enough, it is possible to measure their production rate and compare it to the one of the ground state, calculating the so-called ''isomeric yield ratio''.
Metastable isomers
Metastable isomers can be produced through
nuclear fusion
Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manifest ...
or other
nuclear reaction
In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two atomic nucleus, nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a t ...
s. A nucleus produced this way generally starts its existence in an excited state that relaxes through the emission of one or more
gamma ray
A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s or
conversion electron
Internal conversion is a non-radioactive, atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal ...
s. Sometimes the de-excitation does not completely proceed rapidly to the nuclear
ground state
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
. This usually occurs when the formation of an intermediate excited state has a
spin
Spin or spinning most often refers to:
* Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning
* Spin, the rotation of an object around a central axis
* Spin (propaganda), an intentionally b ...
far different from that of the ground state. Gamma-ray emission is hindered if the spin of the post-emission state differs greatly from that of the emitting state, especially if the excitation energy is low. The excited state in this situation is a good candidate to be metastable if there are no other states of intermediate spin with excitation energies less than that of the metastable state.
Metastable isomers of a particular
isotope
Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
are usually designated with an "m". This designation is placed after the mass number of the atom; for example,
cobalt-58m1 is abbreviated , where 27 is the atomic number of cobalt. For isotopes with more than one metastable isomer, "indices" are placed after the designation, and the labeling becomes m1, m2, m3, and so on. Increasing indices, m1, m2, etc., correlate with increasing levels of excitation energy stored in each of the isomeric states (e.g., hafnium-178m2, or ).
A different kind of metastable nuclear state (isomer) is the fission isomer or shape isomer. Most
actinide
The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The inform ...
nuclei in their ground states are not spherical, but rather
prolate spheroid
A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circu ...
al, with an
axis of symmetry
Axial symmetry is symmetry around an axis; an object is axially symmetric if its appearance is unchanged if rotated around an axis. longer than the other axes, similar to an American football or
rugby ball
A rugby ball is an elongated ellipsoidal ball used in both codes of rugby football. Its measurements and weight are specified by World Rugby and the Rugby League International Federation, the governing bodies for both codes, rugby union and rugby ...
. This geometry can result in quantum-mechanical states where the distribution of protons and neutrons is so much further from spherical geometry that de-excitation to the nuclear ground state is strongly hindered. In general, these states either de-excite to the ground state far more slowly than a "usual" excited state, or they undergo
spontaneous fission
Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakdo ...
with
half-lives
Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of the order of
nanosecond
A nanosecond (ns) is a unit of time in the International System of Units (SI) equal to one billionth of a second, that is, of a second, or 10 seconds.
The term combines the SI prefix ''nano-'' indicating a 1 billionth submultiple of an SI unit ( ...
s or
microsecond
A microsecond is a unit of time in the International System of Units (SI) equal to one millionth (0.000001 or 10−6 or ) of a second. Its symbol is μs, sometimes simplified to us when Unicode is not available.
A microsecond is equal to 1000 n ...
s—a very short time, but many orders of magnitude longer than the half-life of a more usual nuclear excited state. Fission isomers may be denoted with a postscript or superscript "f" rather than "m", so that a fission isomer, e.g. of
plutonium
Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
-240, can be denoted as plutonium-240f or .
Nearly stable isomers
Most nuclear excited states are very unstable and "immediately" radiate away the extra energy after existing on the order of 10
−12 seconds. As a result, the characterization "nuclear isomer" is usually applied only to configurations with half-lives of 10
−9 seconds or longer.
Quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
predicts that certain atomic species should possess isomers with unusually long lifetimes even by this stricter standard and have interesting properties. Some nuclear isomers are so long-lived that they are relatively stable and can be produced and observed in quantity.
The most stable nuclear isomer occurring in nature is
, which is present in all
tantalum
Tantalum is a chemical element with the symbol Ta and atomic number 73. Previously known as ''tantalium'', it is named after Tantalus, a villain in Greek mythology. Tantalum is a very hard, ductile, lustrous, blue-gray transition metal that is ...
samples at about 1 part in 8,300. Its half-life is at least 10
15 years, markedly longer than the
age of the universe
In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe:
a measurement based on direct observations of an early state of the universe, ...
. The low excitation energy of the isomeric state causes both gamma de-excitation to the ground state (which itself is radioactive by beta decay, with a half-life of only 8 hours) and direct
beta decay
In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
to
hafnium
Hafnium is a chemical element with the symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri M ...
or
tungsten
Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isolat ...
to be suppressed due to spin mismatches. The origin of this isomer is mysterious, though it is believed to have been formed in
supernova
A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
e (as are most other heavy elements). Were it to relax to its ground state, it would release a
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
with a
photon energy
Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, ...
of 75
keV Kev can refer to:
Given name
* Kev Adams, French comedian, actor, screenwriter and film producer born Kevin Smadja in 1991
* Kevin Kev Carmody (born 1946), Indigenous Australian singer-songwriter
* Kev Coghlan (born 1988), Scottish Grand Prix motor ...
.
It was first reported in 1988 by C. B. Collins that theoretically can be forced to release its energy by weaker X-rays, although at that time this de-excitation mechanism had never been observed. However, the de-excitation of by resonant photo-excitation of intermediate high levels of this nucleus (''E'' ~ 1 MeV) was observed in 1999 by Belic and co-workers in the Stuttgart nuclear physics group.
is another reasonably stable nuclear isomer. It possesses a half-life of 31 years and the highest excitation energy of any comparably long-lived isomer. One
gram
The gram (originally gramme; SI unit symbol g) is a Physical unit, unit of mass in the International System of Units (SI) equal to one one thousandth of a kilogram.
Originally defined as of 1795 as "the absolute weight of a volume of pure wate ...
of pure contains approximately 1.33 gigajoules of energy, the equivalent of exploding about of
TNT
Trinitrotoluene (), more commonly known as TNT, more specifically 2,4,6-trinitrotoluene, and by its preferred IUPAC name 2-methyl-1,3,5-trinitrobenzene, is a chemical compound with the formula C6H2(NO2)3CH3. TNT is occasionally used as a reagen ...
. In the natural decay of , the energy is released as gamma rays with a total energy of 2.45 MeV. As with , there are disputed reports that can be
stimulated into releasing its energy. Due to this, the substance is being studied as a possible source for
gamma-ray laser
A gamma-ray laser, or graser, is a hypothetical device that would produce coherent gamma rays, just as an ordinary laser produces coherent rays of visible light. Potential applications for gamma-ray lasers include medical imaging, spacecraft pr ...
s. These reports indicate that the energy is released very quickly, so that can produce extremely high powers (on the order of
exawatts). Other isomers have also been investigated as possible media for
gamma-ray stimulated emission.
[
]Holmium
Holmium is a chemical element with the symbol Ho and atomic number 67. It is a rare-earth element and the eleventh member of the lanthanide series. It is a relatively soft, silvery, fairly corrosion-resistant and malleable metal. Like a lot of othe ...
's nuclear isomer has a half-life of 1,200 years, which is nearly the longest half-life of any holmium radionuclide. Only , with a half-life of 4,570 years, is more stable.
has a remarkably low-lying metastable isomer, estimated at only 8.28 ± 0.17 eV above the ground state. After years of failure and one notable false alarm, this decay was directly observed in 2016, based on its internal conversion
Internal conversion is a non-radioactive, atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal ...
decay. This direct detection allowed for a first measurement of the isomer's lifetime under internal-conversion decay, the determination of the isomer's magnetic dipole and electric quadrupole moment via spectroscopy of the electronic shell and an improved measurement of the excitation energy. Due to its low energy, the isomer is expected to allow for direct nuclear laser spectroscopy and the development of a nuclear clock
A nuclear clock or nuclear optical clock is a notional clock that would use the frequency of a Atomic nucleus, nuclear transition as its reference frequency, in the same manner as an atomic clock uses the frequency of an Atomic electron transition ...
of unprecedented accuracy.
High-spin suppression of decay
The most common mechanism for suppression of gamma decay of excited nuclei, and thus the existence of a metastable isomer, is lack of a decay route for the excited state that will change nuclear angular momentum along any given direction by the most common amount of 1 quantum unit ''ħ'' in the spin
Spin or spinning most often refers to:
* Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning
* Spin, the rotation of an object around a central axis
* Spin (propaganda), an intentionally b ...
angular momentum. This change is necessary to emit a gamma photon, which has a spin of 1 unit in this system. Integral changes of 2 and more units in angular momentum are possible, but the emitted photons carry off the additional angular momentum. Changes of more than 1 unit are known as forbidden transition
In spectroscopy, a forbidden mechanism (forbidden transition or forbidden line) is a spectral line associated with absorption or emission of photons by atomic nuclei, atoms, or molecules which undergo a transition that is not allowed by a particul ...
s. Each additional unit of spin change larger than 1 that the emitted gamma ray must carry inhibits decay rate by about 5 orders of magnitude. The highest known spin change of 8 units occurs in the decay of 180mTa, which suppresses its decay by a factor of 1035 from that associated with 1 unit. Instead of a natural gamma-decay half-life of 10−12 seconds, it has a half-life of more than 1023 seconds, or at least 3 × 1015 years, and thus has yet to be observed to decay.
Gamma emission is impossible when the nucleus begins in a zero-spin state, as such an emission would not conserve angular momentum.
Applications
Hafnium
Hafnium is a chemical element with the symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri M ...
isomers (mainly 178m2Hf) have been considered as weapons that could be used to circumvent the Nuclear Non-Proliferation Treaty
The Treaty on the Non-Proliferation of Nuclear Weapons, commonly known as the Non-Proliferation Treaty or NPT, is an international treaty whose objective is to prevent the spread of nuclear weapons and weapons technology, to promote cooperation ...
, since it is claimed that they can be induced to emit very strong gamma radiation. This claim is generally discounted. DARPA
The Defense Advanced Research Projects Agency (DARPA) is a research and development agency of the United States Department of Defense responsible for the development of emerging technologies for use by the military.
Originally known as the Adv ...
had a program to investigate this use of both nuclear isomers. The potential to trigger an abrupt release of energy from nuclear isotopes, a prerequisite to their use in such weapons, is disputed. Nonetheless a 12-member Hafnium Isomer Production Panel (HIPP) was created in 2003 to assess means of mass-producing the isotope.
Technetium
Technetium is a chemical element with the symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. All available technetium is produced as a synthetic element. Naturally occurring technetium is a spontaneous ...
isomers (with a half-life of 6.01 hours) and (with a half-life of 61 days) are used in medical
Medicine is the science and practice of caring for a patient, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care practic ...
and industrial
Industrial may refer to:
Industry
* Industrial archaeology, the study of the history of the industry
* Industrial engineering, engineering dealing with the optimization of complex industrial processes or systems
* Industrial city, a city dominate ...
applications.
Nuclear batteries
Nuclear batteries
Nuclear may refer to:
Physics
Relating to the Atomic nucleus, nucleus of the atom:
*Nuclear engineering
*Nuclear physics
*Nuclear power
*Nuclear reactor
*Nuclear weapon
*Nuclear medicine
*Radiation therapy
*Nuclear warfare
Mathematics
*Nuclear ...
use small amounts (milligrams and microcuries) of radioisotopes with high energy densities. In one betavoltaic device design, radioactive material sits atop a device with adjacent layers of P-type and N-type silicon
Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
. Ionizing radiation directly penetrates the junction and creates electron–hole pair
In the solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers (electrons and electron holes) are created and eliminated. Carrier generation and recombination processes are ...
s. Nuclear isomers could replace other isotopes, and with further development, it may be possible to turn them on and off by triggering decay as needed. Current candidates for such use include 108Ag, 166Ho, 177Lu, and 242Am. As of 2004, the only successfully triggered isomer was 180mTa, which required more photon energy to trigger than was released.
An isotope such as 177Lu releases gamma rays by decay through a series of internal energy levels within the nucleus, and it is thought that by learning the triggering cross sections with sufficient accuracy, it may be possible to create energy stores that are 106 times more concentrated than high explosive
An explosive (or explosive material) is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An exp ...
or other traditional chemical energy storage.
Decay processes
An isomeric transition (IT) is the decay of a nuclear isomer to a lower-energy nuclear state. The actual process has two types (modes):
* γ (gamma) emission (emission of a high-energy photon),
* internal conversion
Internal conversion is a non-radioactive, atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal ...
(the energy is used to eject one of the atom's electrons).
Isomers may decay into other elements, though the rate of decay may differ between isomers. For example, 177mLu can beta-decay to 177 Hf with a half-life of 160.4 d, or it can undergo isomeric transition to 177Lu with a half-life of 160.4 d, which then beta-decays to 177Hf with a half-life of 6.68 d.
The emission of a gamma ray from an excited nuclear state allows the nucleus to lose energy and reach a lower-energy state, sometimes its ground state
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
. In certain cases, the excited nuclear state following a nuclear reaction
In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two atomic nucleus, nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a t ...
or other type of radioactive decay
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
can become a metastable
In chemistry and physics, metastability denotes an intermediate Energy level, energetic state within a dynamical system other than the system's ground state, state of least energy.
A ball resting in a hollow on a slope is a simple example of me ...
nuclear excited state. Some nuclei are able to stay in this metastable excited state for minutes, hours, days, or occasionally far longer.
The process of isomeric transition is similar to gamma emission from any excited nuclear state, but differs by involving excited metastable states of nuclei with longer half-lives. As with other excited states, the nucleus can be left in an isomeric state following the emission of an alpha particle
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produce ...
, beta particle
A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, β∠...
, or some other type of particle.
The gamma ray may transfer its energy directly to one of the most tightly bound electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
s, causing that electron to be ejected from the atom, a process termed the photoelectric effect
The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid st ...
. This should not be confused with the internal conversion
Internal conversion is a non-radioactive, atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal ...
process, in which no gamma-ray photon is produced as an intermediate particle.
See also
*Induced gamma emission
In physics, induced gamma emission (IGE) refers to the process of fluorescent emission of gamma rays from excited nuclei, usually involving a specific nuclear isomer. It is analogous to conventional fluorescence, which is defined as the emission of ...
*Isomeric shift
The isomeric shift (also called isomer shift) is the shift on atomic spectral lines and gamma spectral lines, which occurs as a consequence of replacement of one nuclear isomer by another. It is usually called isomeric shift on atomic spectral line ...
References
External links
Research group which presented initial claims of hafnium nuclear isomer de-excitation control.
– The Center for Quantum Electronics, The University of Texas at Dallas.
*JASON Defense Advisory Group
JASON is an independent group of elite scientists which advises the United States government on matters of science and technology, mostly of a sensitive nature. The group was created in the aftermath of the Sputnik launch as a way to reinvigorate ...
br>report on high energy nuclear materials
mentioned in the ''Washington Post'' story above
* login required?
– The Center for Quantum Electronics, The University of Texas at Dallas.
– The Center for Quantum Electronics, The University of Texas at Dallas.
{{DEFAULTSORT:Nuclear Isomer
Isomer, nuclear