In
probability theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set o ...
and
statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of ...
, the ''F''-distribution or F-ratio, also known as Snedecor's ''F'' distribution or the Fisher–Snedecor distribution (after
Ronald Fisher
Sir Ronald Aylmer Fisher (17 February 1890 – 29 July 1962) was a British polymath who was active as a mathematician, statistician, biologist, geneticist, and academic. For his work in statistics, he has been described as "a genius who a ...
and
George W. Snedecor
George Waddel Snedecor (October 20, 1881 – February 15, 1974) was an American mathematician and statistician. He contributed to the foundations of analysis of variance, data analysis, experimental design, and statistical methodology. Snedecor ...
) is a
continuous probability distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
that arises frequently as the
null distribution
In statistical hypothesis testing, the null distribution is the probability distribution of the test statistic when the null hypothesis is true.
For example, in an F-test, the null distribution is an F-distribution.
Null distribution is a tool scie ...
of a
test statistic
A test statistic is a statistic (a quantity derived from the sample) used in statistical hypothesis testing.Berger, R. L.; Casella, G. (2001). ''Statistical Inference'', Duxbury Press, Second Edition (p.374) A hypothesis test is typically specif ...
, most notably in the
analysis of variance
Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences among means. ANOVA was developed by the statisticia ...
(ANOVA) and other
''F''-tests.
Definition
The F-distribution with ''d''
1 and ''d''
2 degrees of freedom is the distribution of
:
where
and
are independent
random variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s with
chi-square distribution
In probability theory and statistics, the chi-squared distribution (also chi-square or \chi^2-distribution) with k degrees of freedom is the distribution of a sum of the squares of k independent standard normal random variables. The chi-squa ...
s with respective degrees of freedom
and
.
It can be shown to follow that the
probability density function
In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can ...
(pdf) for ''X'' is given by
:
for
real
Real may refer to:
Currencies
* Brazilian real (R$)
* Central American Republic real
* Mexican real
* Portuguese real
* Spanish real
* Spanish colonial real
Music Albums
* ''Real'' (L'Arc-en-Ciel album) (2000)
* ''Real'' (Bright album) (2010)
...
''x'' > 0. Here
is the
beta function
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral
: \Beta(z_1,z_2) = \int_0^1 t^(1 ...
. In many applications, the parameters ''d''
1 and ''d''
2 are
positive integer
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called ''cardinal n ...
s, but the distribution is well-defined for positive real values of these parameters.
The
cumulative distribution function
In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x.
Ev ...
is
:
where ''I'' is the
regularized incomplete beta function
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral
: \Beta(z_1,z_2) = \int_0^1 t^(1 ...
.
The expectation, variance, and other details about the F(''d''
1, ''d''
2) are given in the sidebox; for ''d''
2 > 8, the
excess kurtosis
In probability theory and statistics, kurtosis (from el, κυρτός, ''kyrtos'' or ''kurtos'', meaning "curved, arching") is a measure of the "tailedness" of the probability distribution of a real-valued random variable. Like skewness, kurtosi ...
is
:
The ''k''-th moment of an F(''d''
1, ''d''
2) distribution exists and is finite only when 2''k'' < ''d''
2 and it is equal to
:
The ''F''-distribution is a particular parametrization of the
beta prime distribution
In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kindJohnson et al (1995), p 248) is an absolutely continuous probability distribution.
Definitions
...
, which is also called the beta distribution of the second kind.
The
characteristic function In mathematics, the term "characteristic function" can refer to any of several distinct concepts:
* The indicator function of a subset, that is the function
::\mathbf_A\colon X \to \,
:which for a given subset ''A'' of ''X'', has value 1 at points ...
is listed incorrectly in many standard references (e.g.,
). The correct expression is
:
where ''U''(''a'', ''b'', ''z'') is the
confluent hypergeometric function
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular ...
of the second kind.
Characterization
A
random variate
In probability and statistics, a random variate or simply variate is a particular outcome of a ''random variable'': the random variates which are other outcomes of the same random variable might have different values (random numbers).
A random d ...
of the ''F''-distribution with parameters
and
arises as the ratio of two appropriately scaled
chi-squared variates:
:
where
*
and
have
chi-squared distribution
In probability theory and statistics, the chi-squared distribution (also chi-square or \chi^2-distribution) with k degrees of freedom is the distribution of a sum of the squares of k independent standard normal random variables. The chi-squa ...
s with
and
degrees of freedom
Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or ...
respectively, and
*
and
are
independent
Independent or Independents may refer to:
Arts, entertainment, and media Artist groups
* Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s
* Independ ...
.
In instances where the ''F''-distribution is used, for example in the
analysis of variance
Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences among means. ANOVA was developed by the statisticia ...
, independence of
and
might be demonstrated by applying
Cochran's theorem In statistics, Cochran's theorem, devised by William G. Cochran, is a theorem used to justify results relating to the probability distributions of statistics that are used in the analysis of variance.
Statement
Let ''U''1, ..., ''U'N'' be i.i. ...
.
Equivalently, the random variable of the ''F''-distribution may also be written
:
where
and
,
is the sum of squares of
random variables from normal distribution
and
is the sum of squares of
random variables from normal distribution
.
In a
frequentist
Frequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or pr ...
context, a scaled ''F''-distribution therefore gives the probability
, with the ''F''-distribution itself, without any scaling, applying where
is being taken equal to
. This is the context in which the ''F''-distribution most generally appears in
''F''-tests: where the null hypothesis is that two independent normal variances are equal, and the observed sums of some appropriately selected squares are then examined to see whether their ratio is significantly incompatible with this null hypothesis.
The quantity
has the same distribution in Bayesian statistics, if an uninformative rescaling-invariant
Jeffreys prior
In Bayesian probability, the Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative (objective) prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher infor ...
is taken for the
prior probabilities
In Bayesian probability, Bayesian statistical inference, a prior probability distribution, often simply called the prior, of an uncertain quantity is the probability distribution that would express one's beliefs about this quantity before some e ...
of
and
.
[G. E. P. Box and G. C. Tiao (1973), ''Bayesian Inference in Statistical Analysis'', Addison-Wesley. p. 110] In this context, a scaled ''F''-distribution thus gives the posterior probability
, where the observed sums
and
are now taken as known.
Properties and related distributions
*If
and
(
Chi squared distribution
In probability theory and statistics, the chi-squared distribution (also chi-square or \chi^2-distribution) with k degrees of freedom is the distribution of a sum of the squares of k independent standard normal random variables. The chi-square ...
) are
independent
Independent or Independents may refer to:
Arts, entertainment, and media Artist groups
* Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s
* Independ ...
, then
*If
(
Gamma distribution
In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma distri ...
) are independent, then
*If
(
Beta distribution
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval , 1in terms of two positive parameters, denoted by ''alpha'' (''α'') and ''beta'' (''β''), that appear as ...
) then
*Equivalently, if
, then
.
*If
, then
has a
beta prime distribution
In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kindJohnson et al (1995), p 248) is an absolutely continuous probability distribution.
Definitions
...
:
.
*If
then
has the
chi-squared distribution
In probability theory and statistics, the chi-squared distribution (also chi-square or \chi^2-distribution) with k degrees of freedom is the distribution of a sum of the squares of k independent standard normal random variables. The chi-squa ...
*
is equivalent to the scaled
Hotelling's T-squared distribution
In statistics, particularly in hypothesis testing, the Hotelling's ''T''-squared distribution (''T''2), proposed by Harold Hotelling, is a multivariate probability distribution that is tightly related to the ''F''-distribution and is most not ...
.
*If
then
.
*If
—
Student's t-distribution
In probability and statistics, Student's ''t''-distribution (or simply the ''t''-distribution) is any member of a family of continuous probability distributions that arise when estimating the mean of a normally distributed population in sit ...
— then:
*''F''-distribution is a special case of type 6
Pearson distribution
The Pearson distribution is a family of continuous probability distributions. It was first published by Karl Pearson in 1895 and subsequently extended by him in 1901 and 1916 in a series of articles on biostatistics.
History
The Pearson system ...
*If
and
are independent, with
Laplace(''μ'', ''b'') then
*If
then
(
Fisher's z-distribution
Fisher's ''z''-distribution is the statistical distribution of half the logarithm of an ''F''-distribution variate:
: z = \frac 1 2 \log F
It was first described by Ronald Fisher in a paper delivered at the International Mathematical Congr ...
)
*The
noncentral ''F''-distribution simplifies to the ''F''-distribution if
.
*The doubly
noncentral ''F''-distribution simplifies to the ''F''-distribution if
*If
is the quantile ''p'' for
and
is the quantile
for
, then
* ''F''-distribution is an instance of
ratio distributions
See also
*
Beta prime distribution
In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kindJohnson et al (1995), p 248) is an absolutely continuous probability distribution.
Definitions
...
*
Chi-square distribution
In probability theory and statistics, the chi-squared distribution (also chi-square or \chi^2-distribution) with k degrees of freedom is the distribution of a sum of the squares of k independent standard normal random variables. The chi-squa ...
*
Chow test
The Chow test (), proposed by econometrician Gregory Chow in 1960, is a test of whether the true coefficients in two linear regressions on different data sets are equal. In econometrics, it is most commonly used in time series analysis to test for ...
*
Gamma distribution
In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma distri ...
*
Hotelling's T-squared distribution
In statistics, particularly in hypothesis testing, the Hotelling's ''T''-squared distribution (''T''2), proposed by Harold Hotelling, is a multivariate probability distribution that is tightly related to the ''F''-distribution and is most not ...
*
Wilks' lambda distribution In statistics, Wilks' lambda distribution (named for Samuel S. Wilks), is a probability distribution used in multivariate hypothesis testing, especially with regard to the likelihood-ratio test and multivariate analysis of variance (MANOVA).
Def ...
*
Wishart distribution
In statistics, the Wishart distribution is a generalization to multiple dimensions of the gamma distribution. It is named in honor of John Wishart, who first formulated the distribution in 1928.
It is a family of probability distributions define ...
References
External links
Table of critical values of the ''F''-distributionEarliest Uses of Some of the Words of Mathematics: entry on ''F''-distribution contains a brief history
{{DEFAULTSORT:F-distribution
Continuous distributions
Analysis of variance