Finitely Generated Monoid
   HOME

TheInfoList



OR:

In abstract algebra, a branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a monoid is a set equipped with an
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement f ...
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ...
s occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of
strings String or strings may refer to: *String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects Arts, entertainment, and media Films * ''Strings'' (1991 film), a Canadian anim ...
built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and
concurrent computing Concurrent computing is a form of computing in which several computations are executed '' concurrently''—during overlapping time periods—instead of ''sequentially—''with one completing before the next starts. This is a property of a syst ...
. In theoretical computer science, the study of monoids is fundamental for automata theory (
Krohn–Rhodes theory In mathematics and computer science, the Krohn–Rhodes theory (or algebraic automata theory) is an approach to the study of finite semigroups and automata that seeks to decompose them in terms of elementary components. These components correspond ...
), and formal language theory (
star height problem The star height problem in formal language theory is the question whether all regular languages can be expressed using regular expressions of limited star height, i.e. with a limited nesting depth of Kleene stars. Specifically, is a nesting depth ...
). See semigroup for the history of the subject, and some other general properties of monoids.


Definition

A set ''S'' equipped with a
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
, which we will denote •, is a monoid if it satisfies the following two axioms: ; Associativity: For all ''a'', ''b'' and ''c'' in ''S'', the equation holds. ; Identity element: There exists an element ''e'' in ''S'' such that for every element ''a'' in ''S'', the equalities and hold. In other words, a monoid is a semigroup with an identity element. It can also be thought of as a magma with associativity and identity. The identity element of a monoid is unique. For this reason the identity is regarded as a constant, i. e. 0-ary (or nullary) operation. The monoid therefore is characterized by specification of the
triple Triple is used in several contexts to mean "threefold" or a "treble": Sports * Triple (baseball), a three-base hit * A basketball three-point field goal * A figure skating jump with three rotations * In bowling terms, three strikes in a row * In ...
(''S'', • , ''e''). Depending on the context, the symbol for the binary operation may be omitted, so that the operation is denoted by juxtaposition; for example, the monoid axioms may be written and . This notation does not imply that it is numbers being multiplied. A monoid in which each element has an
inverse Inverse or invert may refer to: Science and mathematics * Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence * Additive inverse (negation), the inverse of a number that, when ad ...
is a group.


Monoid structures


Submonoids

A submonoid of a monoid is a
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
''N'' of ''M'' that is closed under the monoid operation and contains the identity element ''e'' of ''M''. Symbolically, ''N'' is a submonoid of ''M'' if , whenever , and . In this case, ''N'' is a monoid under the binary operation inherited from ''M''. On the other hand, if ''N'' is subset of a monoid that is
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
under the monoid operation, and is a monoid for this inherited operation, then ''N'' is not always a submonoid, since the identity elements may differ. For example, the singleton set is closed under multiplication, and is not a submonoid of the (multiplicative) monoid of the
nonnegative integer In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
s.


Generators

A subset ''S'' of ''M'' is said to ''generate'' ''M'' if the smallest submonoid of ''M'' containing ''S'' is ''M''. If there is a finite set that generates ''M'', then ''M'' is said to be a finitely generated monoid.


Commutative monoid

A monoid whose operation is commutative is called a commutative monoid (or, less commonly, an abelian monoid). Commutative monoids are often written additively. Any commutative monoid is endowed with its ''algebraic''
preorder In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special c ...
ing , defined by if there exists ''z'' such that . An ''order-unit'' of a commutative monoid ''M'' is an element ''u'' of ''M'' such that for any element ''x'' of ''M'', there exists ''v'' in the set generated by ''u'' such that . This is often used in case ''M'' is the positive cone of a partially ordered abelian group ''G'', in which case we say that ''u'' is an order-unit of ''G''.


Partially commutative monoid

A monoid for which the operation is commutative for some, but not all elements is a trace monoid; trace monoids commonly occur in the theory of concurrent computation.


Examples

* Out of the 16 possible binary Boolean operators, four have a two-sided identity that is also commutative and associative. These four each make the set a commutative monoid. Under the standard definitions, AND and XNOR have the identity True while
XOR Exclusive or or exclusive disjunction is a logical operation that is true if and only if its arguments differ (one is true, the other is false). It is symbolized by the prefix operator J and by the infix operators XOR ( or ), EOR, EXOR, , ...
and OR have the identity False. The monoids from AND and OR are also idempotent while those from XOR and XNOR are not. * The set of natural numbers \N = \ is a commutative monoid under addition (identity element 0) or multiplication (identity element 1). A submonoid of under addition is called a
numerical monoid In mathematics, a numerical semigroup is a special kind of a semigroup. Its underlying Set (mathematics), set is the set of all nonnegative integers except a finite set, finite number and the binary operation is the operation of addition of intege ...
. * The set of
positive integer In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
s \N \setminus \ is a commutative monoid under multiplication (identity element 1). * Given a set , the set of subsets of is a commutative monoid under intersection (identity element is itself). * Given a set , the set of subsets of is a commutative monoid under union (identity element is the
empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
). * Generalizing the previous example, every bounded semilattice is an idempotent commutative monoid. ** In particular, any bounded lattice can be endowed with both a meet- and a join- monoid structure. The identity elements are the lattice's top and its bottom, respectively. Being lattices, Heyting algebras and Boolean algebras are endowed with these monoid structures. * Every singleton set closed under a binary operation • forms the trivial (one-element) monoid, which is also the trivial group. * Every group is a monoid and every abelian group a commutative monoid. * Any semigroup may be turned into a monoid simply by adjoining an element not in and defining for all . This conversion of any semigroup to the monoid is done by the free functor between the category of semigroups and the category of monoids. ** Thus, an idempotent monoid (sometimes known as ''find-first'') may be formed by adjoining an identity element to the
left zero semigroup In mathematics, a null semigroup (also called a zero semigroup) is a semigroup with an absorbing element, called zero, in which the product of any two elements is zero. If every element of a semigroup is a left zero then the semigroup is called a l ...
over a set . The opposite monoid (sometimes called ''find-last'') is formed from the right zero semigroup over . *** Adjoin an identity to the left-zero semigroup with two elements . Then the resulting idempotent monoid models the
lexicographical order In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a ...
of a sequence given the orders of its elements, with ''e'' representing equality. * The underlying set of any ring, with addition or multiplication as the operation. (By definition, a ring has a multiplicative identity 1.) ** The integers, rational numbers, real numbers or complex numbers, with addition or multiplication as operation. ** The set of all by matrices over a given ring, with matrix addition or matrix multiplication as the operation. * The set of all finite
strings String or strings may refer to: *String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects Arts, entertainment, and media Films * ''Strings'' (1991 film), a Canadian anim ...
over some fixed alphabet forms a monoid with string concatenation as the operation. The empty string serves as the identity element. This monoid is denoted and is called the '' free monoid'' over . It is not commutative if has at least two elements. * Given any monoid , the ''opposite monoid'' has the same carrier set and identity element as , and its operation is defined by . Any commutative monoid is the opposite monoid of itself. * Given two sets and endowed with monoid structure (or, in general, any finite number of monoids, , their
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\ti ...
is also a monoid (respectively, ). The associative operation and the identity element are defined pairwise. * Fix a monoid . The set of all functions from a given set to is also a monoid. The identity element is a
constant function In mathematics, a constant function is a function whose (output) value is the same for every input value. For example, the function is a constant function because the value of is 4 regardless of the input value (see image). Basic properties ...
mapping any value to the identity of ; the associative operation is defined pointwise. * Fix a monoid with the operation and identity element , and consider its power set consisting of all
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
s of . A binary operation for such subsets can be defined by . This turns into a monoid with identity element . In the same way the power set of a group is a monoid under the
product of group subsets In mathematics, one can define a product of group subsets in a natural way. If ''S'' and ''T'' are subsets of a group ''G'', then their product is the subset of ''G'' defined by :ST = \. The subsets ''S'' and ''T'' need not be subgroups for this pro ...
. * Let be a set. The set of all functions forms a monoid under
function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
. The identity is just the identity function. It is also called the ''
full transformation monoid In algebra, a transformation semigroup (or composition semigroup) is a collection of transformations ( functions from a set to itself) that is closed under function composition. If it includes the identity function, it is a monoid, called a transfo ...
'' of . If is finite with elements, the monoid of functions on is finite with elements. * Generalizing the previous example, let be a category and an object of . The set of all endomorphisms of , denoted , forms a monoid under composition of
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
s. For more on the relationship between category theory and monoids see below. * The set of homeomorphism classes of
compact surface In mathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only ''non-compact'' components. Examples The only connected one-dimensional example ...
s with the connected sum. Its unit element is the class of the ordinary 2-sphere. Furthermore, if denotes the class of the torus, and ''b'' denotes the class of the projective plane, then every element ''c'' of the monoid has a unique expression the form where is a positive integer and , or . We have . * Let \langle f\rangle be a cyclic monoid of order , that is, \langle f\rangle = \left\. Then f^n = f^k for some 0 \le k < n. In fact, each such gives a distinct monoid of order , and every cyclic monoid is isomorphic to one of these.
Moreover, can be considered as a function on the points \ given by \begin 0 & 1 & 2 & \cdots & n-2 & n-1 \\ 1 & 2 & 3 & \cdots & n-1 & k\end or, equivalently f(i) := \begin i+1, & \text 0 \le i < n-1 \\ k, & \text i = n-1. \end Multiplication of elements in \langle f\rangle is then given by function composition. When k = 0 then the function is a permutation of \, and gives the unique cyclic group of order .


Properties

The monoid axioms imply that the identity element is unique: If and are identity elements of a monoid, then .


Products and powers

For each nonnegative integer , one can define the product p_n = \textstyle \prod_^n a_i of any sequence (a_1,\ldots,a_n) of elements of a monoid recursively: let and let for . As a special case, one can define nonnegative integer powers of an element of a monoid: and for . Then for all .


Invertible elements

An element is called invertible if there exists an element such that and . The element is called the inverse of . Inverses, if they exist, are unique: If and are inverses of , then by associativity . If is invertible, say with inverse , then one can define negative powers of by setting for each ; this makes the equation hold for all . The set of all invertible elements in a monoid, together with the operation •, forms a group.


Grothendieck group

Not every monoid sits inside a group. For instance, it is perfectly possible to have a monoid in which two elements and exist such that holds even though is not the identity element. Such a monoid cannot be embedded in a group, because in the group multiplying both sides with the inverse of would get that , which is not true. A monoid has the cancellation property (or is cancellative) if for all , and in , the equality implies , and the equality implies . A commutative monoid with the cancellation property can always be embedded in a group via the ''Grothendieck group construction''. That is how the additive group of the integers (a group with operation +) is constructed from the additive monoid of natural numbers (a commutative monoid with operation + and cancellation property). However, a non-commutative cancellative monoid need not be embeddable in a group. If a monoid has the cancellation property and is ''finite'', then it is in fact a group. The right- and left-cancellative elements of a monoid each in turn form a submonoid (i.e. are closed under the operation and obviously include the identity). This means that the cancellative elements of any commutative monoid can be extended to a group. The cancellative property in a monoid is not necessary to perform the Grothendieck construction – commutativity is sufficient. However, if a commutative monoid does not have the cancellation property, the homomorphism of the monoid into its Grothendieck group is not injective. More precisely, if , then and have the same image in the Grothendieck group, even if . In particular, if the monoid has an absorbing element, then its Grothendieck group is the trivial group.


Types of monoids

An inverse monoid is a monoid where for every ''a'' in ''M'', there exists a unique ''a''−1 in ''M'' such that and . If an inverse monoid is cancellative, then it is a group. In the opposite direction, a ''
zerosumfree monoid In abstract algebra, an additive monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoi ...
'' is an additively written monoid in which implies that and : equivalently, that no element other than zero has an additive inverse.


Acts and operator monoids

Let ''M'' be a monoid, with the binary operation denoted by • and the identity element denoted by ''e''. Then a (left) ''M''-act (or left act over ''M'') is a set ''X'' together with an operation which is compatible with the monoid structure as follows: * for all ''x'' in ''X'': ; * for all ''a'', ''b'' in ''M'' and ''x'' in ''X'': . This is the analogue in monoid theory of a (left) group action. Right ''M''-acts are defined in a similar way. A monoid with an act is also known as an ''
operator monoid In algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using th ...
''. Important examples include transition systems of
semiautomata In mathematics and theoretical computer science, a semiautomaton is a deterministic finite automaton having inputs but no output. It consists of a Set (mathematics), set ''Q'' of state (computer science), states, a set Σ called the input alphabet, ...
. A transformation semigroup can be made into an operator monoid by adjoining the identity transformation.


Monoid homomorphisms

A homomorphism between two monoids and is a function such that * for all ''x'', ''y'' in ''M'' * , where ''e''''M'' and ''e''''N'' are the identities on ''M'' and ''N'' respectively. Monoid homomorphisms are sometimes simply called monoid morphisms. Not every semigroup homomorphism between monoids is a monoid homomorphism, since it may not map the identity to the identity of the target monoid, even though the identity is the identity of the image of homomorphism. For example, consider M_n, the set of residue classes modulo n equipped with multiplication. In particular, the class of 1 is the identity. Function f\colon M_3\to M_6 given by f(k)=3k is a semigroup homomorphism as 3k\cdot 3l = 9kl = 3kl in M_6. However, f(1)=3 \neq 1, so a monoid homomorphism is a semigroup homomorphism between monoids that maps the identity of the first monoid to the identity of the second monoid and the latter condition cannot be omitted. In contrast, a semigroup homomorphism between groups is always a group homomorphism, as it necessarily preserves the identity (because, in a group, the identity is the only element such that ). A bijective monoid homomorphism is called a monoid isomorphism. Two monoids are said to be isomorphic if there is a monoid isomorphism between them.


Equational presentation

Monoids may be given a ''presentation'', much in the same way that groups can be specified by means of a group presentation. One does this by specifying a set of generators Σ, and a set of relations on the free monoid Σ. One does this by extending (finite)
binary relation In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
s on Σ to monoid congruences, and then constructing the quotient monoid, as above. Given a binary relation , one defines its symmetric closure as . This can be extended to a symmetric relation by defining if and only if and for some strings with . Finally, one takes the reflexive and transitive closure of ''E'', which is then a monoid congruence. In the typical situation, the relation ''R'' is simply given as a set of equations, so that R=\. Thus, for example, : \langle p,q\,\vert\; pq=1\rangle is the equational presentation for the bicyclic monoid, and : \langle a,b \,\vert\; aba=baa, bba=bab\rangle is the plactic monoid of degree 2 (it has infinite order). Elements of this plactic monoid may be written as a^ib^j(ba)^k for integers ''i'', ''j'', ''k'', as the relations show that ''ba'' commutes with both ''a'' and ''b''.


Relation to category theory

Monoids can be viewed as a special class of categories. Indeed, the axioms required of a monoid operation are exactly those required of
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
composition when restricted to the set of all morphisms whose source and target is a given object. That is, : ''A monoid is, essentially, the same thing as a category with a single object.'' More precisely, given a monoid , one can construct a small category with only one object and whose morphisms are the elements of ''M''. The composition of morphisms is given by the monoid operation •. Likewise, monoid homomorphisms are just functors between single object categories. So this construction gives an
equivalence Equivalence or Equivalent may refer to: Arts and entertainment *Album-equivalent unit, a measurement unit in the music industry *Equivalence class (music) *''Equivalent VIII'', or ''The Bricks'', a minimalist sculpture by Carl Andre *'' Equival ...
between the category of (small) monoids Mon and a full subcategory of the category of (small) categories Cat. Similarly, the category of groups is equivalent to another full subcategory of Cat. In this sense, category theory can be thought of as an extension of the concept of a monoid. Many definitions and theorems about monoids can be generalised to small categories with more than one object. For example, a quotient of a category with one object is just a quotient monoid. Monoids, just like other algebraic structures, also form their own category, Mon, whose objects are monoids and whose morphisms are monoid homomorphisms. There is also a notion of monoid object which is an abstract definition of what is a monoid in a category. A monoid object in Set is just a monoid.


Monoids in computer science

In computer science, many abstract data types can be endowed with a monoid structure. In a common pattern, a sequence of elements of a monoid is " folded" or "accumulated" to produce a final value. For instance, many iterative algorithms need to update some kind of "running total" at each iteration; this pattern may be elegantly expressed by a monoid operation. Alternatively, the associativity of monoid operations ensures that the operation can be
parallelized Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different for ...
by employing a prefix sum or similar algorithm, in order to utilize multiple cores or processors efficiently. Given a sequence of values of type ''M'' with identity element \varepsilon and associative operation \bullet, the ''fold'' operation is defined as follows: : \mathrm: M^ \rarr M = \ell \mapsto \begin \varepsilon & \mbox \ell = \mathrm \\ m \bullet \mathrm \, \ell' & \mbox \ell = \mathrm \, m \, \ell' \end In addition, any
data structure In computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, a ...
can be 'folded' in a similar way, given a serialization of its elements. For instance, the result of "folding" a
binary tree In computer science, a binary tree is a k-ary k = 2 tree data structure in which each node has at most two children, which are referred to as the ' and the '. A recursive definition using just set theory notions is that a (non-empty) binary t ...
might differ depending on pre-order vs. post-order tree traversal.


MapReduce

An application of monoids in computer science is the so-called MapReduce programming model (se
Encoding Map-Reduce As A Monoid With Left Folding
. MapReduce, in computing, consists of two or three operations. Given a dataset, "Map" consists of mapping arbitrary data to elements of a specific monoid. "Reduce" consists of folding those elements, so that in the end we produce just one element. For example, if we have a multiset, in a program it is represented as a map from elements to their numbers. Elements are called keys in this case. The number of distinct keys may be too big, and in this case, the multiset is being sharded. To finalize reduction properly, the "Shuffling" stage regroups the data among the nodes. If we do not need this step, the whole Map/Reduce consists of mapping and reducing; both operations are parallelizable, the former due to its element-wise nature, the latter due to associativity of the monoid.


Complete monoids

A complete monoid is a commutative monoid equipped with an infinitary sum operation \Sigma_I for any index set such thatDroste, M., & Kuich, W. (2009). Semirings and Formal Power Series. ''Handbook of Weighted Automata'', 3–28. , pp. 7–10 : \sum_ =0;\quad \sum_ = m_j;\quad \sum_ = m_j+m_k \quad \text j\neq k and : \sum_ = \sum_ m_i \quad \text \bigcup_ I_j=I \text I_j \cap I_ = \emptyset \quad \text j\neq j'. An ordered commutative monoid is a commutative monoid together with a partial ordering such that for every , and implies for all . A continuous monoid is an ordered commutative monoid in which every
directed subset In mathematics, a directed set (or a directed preorder or a filtered set) is a nonempty set A together with a reflexive and transitive binary relation \,\leq\, (that is, a preorder), with the additional property that every pair of elements has an ...
has a least upper bound, and these least upper bounds are compatible with the monoid operation: : a + \sup S = \sup(a + S) for every and directed subset of . If is a continuous monoid, then for any index set and collection of elements , one can define : \sum_I a_i = \sup_ \; \sum_E a_i, and together with this infinitary sum operation is a complete monoid.


See also

* Green's relations * Monad (functional programming) * Semiring and Kleene algebra *
Star height problem The star height problem in formal language theory is the question whether all regular languages can be expressed using regular expressions of limited star height, i.e. with a limited nesting depth of Kleene stars. Specifically, is a nesting depth ...
* Vedic square * Frobenioid


Notes


References

* * * * *


External links

* * * {{PlanetMath, urlname=Monoid , title=Monoid , id=389 Algebraic structures Category theory Semigroup theory