Fibrillar Crystals
   HOME

TheInfoList



OR:

Fibrils (from the
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
''fibra'') are structural biological materials found in nearly all living organisms. Not to be confused with
fibers Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate ...
or
filament The word filament, which is descended from Latin ''filum'' meaning " thread", is used in English for a variety of thread-like structures, including: Astronomy * Galaxy filament, the largest known cosmic structures in the universe * Solar filament ...
s, fibrils tend to have diameters ranging from 10-100 nanometers (whereas fibers are micro to milli-scale structures and filaments have diameters approximately 10-50 nanometers in size). Fibrils are not usually found alone but rather are parts of greater hierarchical structures commonly found in biological systems. Due to the prevalence of fibrils in biological systems, their study is of great importance in the fields of
microbiology Microbiology () is the scientific study of microorganisms, those being unicellular (single cell), multicellular (cell colony), or acellular (lacking cells). Microbiology encompasses numerous sub-disciplines including virology, bacteriology, prot ...
, biomechanics, and materials science.


Structure and mechanics

Fibrils are composed of linear biopolymers, and are characterized by rod-like structures with high length-to-diameter ratios. They often spontaneously arrange into helical structures. In biomechanics problems, fibrils can be characterized as classical beams with a roughly circular cross-sectional area on the nanometer scale. As such, simple
beam bending In applied mechanics, bending (also known as flexure) characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element. The structural element is assumed to ...
equations can be applied to calculate flexural strength of fibrils under ultra-low loading conditions. Like most biopolymers, stress-strain relationships of fibrils tend to show a characteristic toe-heel region before a linear, elastic region. Unlike biopolymers, fibrils do not behave like homogeneous materials, as yield strength has been shown to vary with volume, indicating structural dependencies.
Hydration Hydration may refer to: * Hydrate, a substance that contains water * Hydration enthalpy, energy released through hydrating a substance * Hydration reaction, a chemical addition reaction where a hydroxyl group and proton are added to a compound * ...
has been shown to produce a noticeable effect in the mechanical properties of fibrillar materials. The presence of water has been shown to decrease the stiffness of collagen fibrils, as well as increase their rate of stress relaxation and strength. From a biological standpoint, water content acts as a toughening mechanism for fibril structures, allowing for higher energy absorption and greater straining capabilities. Fibrils mechanical strengthening properties originate at the molecular level. The forces distributed in the fiber are tensile load carried by the fibril and
shear force In solid mechanics, shearing forces are unaligned forces acting on one part of a body in a specific direction, and another part of the body in the opposite direction. When the forces are collinear (aligned with each other), they are called t ...
s felt due to interaction with other fibril molecules. The fracture strength of individual collagen molecules is as a result controlled by covalent chemistry between molecules. The shear strength between two collagen molecules is controlled by weak dispersive and
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
interactions and by some molecular covalent
crosslinks Crosslinks is an evangelical Anglican missionary society, drawing its support mainly from parishes in the Church of England and Church of Ireland. It was known as the Bible Churchmen's Missionary Society (BCMS) until 1992. The BCMS was created as ...
. Slip in the system occur when these intermolecular bonds face an applied stress greater than their interaction strength. Intermolecular bonds breaking do not immediately lead to failure, in contrast they play an essential role in energy dissipation that lower the stress felt overall by the material and enable it to withstand fracture.  These bonds, often hydrogen bonding and dispersive Van der Waals interactions, act as “sacrificial” bonds, existing for the purpose of lowering stress in the network. Molecular covalent crosslinks also play a key role in the formation of fibril networks. While crosslinking molecules can lead to strong structures, too much crosslinking in biopolymer networks are more likely to fracture as the network is not able to dissipate the energy, leading to a material that is strong but not tough. This is observed in dehydrated or aged collagen, explaining why with age human tissues become more brittle Differences in structure between fibrils of different origin is typically determined by x-ray diffraction. A scanning electron microscope (SEM) can be used to observe specific details on larger fibril species such as the characteristic 67 nm bands in collagen, but often is not fine enough to determine the full structure.


Contributions to mechanical properties of biomaterials

Natural materials show a combination of normally contradicting mechanical properties ( softness and
toughness In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing. These fibrils are often oriented in a single direction, leading to
anisotropic Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physic ...
mechanical response in the resulting biocomposite material. This is a prime advantage as most of these materials withstand stresses in a single direction, and so a higher yield and fracture stress in the direction of the applied stress ensures the material structural integrity. Macro, micro, and nano fibrils enable the material to resist fracture through a series of fracture resistance mechanisms: # Fibrillar sliding, or the process of shear as load is applied, enabling
plasticity Plasticity may refer to: Science * Plasticity (physics), in engineering and physics, the propensity of a solid material to undergo permanent deformation under load * Neuroplasticity, in neuroscience, how entire brain structures, and the brain it ...
# Fibril bridging across the region of a crack # Crack deflection at the tip of crack, where stress concentration can lead to further propagation and eventual failure. These mechanisms work together to resist fracture, allowing these materials to withstand millions of cycles of load without failure, essential for mobile living beings. Another mechanical advantage of biopolymers is their ability to be strained, resulting from the existence of strong fibrillar structures in a more compliant matrix material. The good deformability of interfacial matrices plays a key role in allowing for reorientation of constituents during deformation. Fibrillogenesis is the expansion of fine fibrils which is common in
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole ...
fibers of
connective tissue Connective tissue is one of the four primary types of animal tissue, along with epithelial tissue, muscle tissue, and nervous tissue. It develops from the mesenchyme derived from the mesoderm the middle embryonic germ layer. Connective tiss ...
. The definite mechanisms of fibrillogenesis are still unknown, although many hypotheses resulting from basic research help discover many possible mechanisms. In early experiments, collagen I could be distilled from tissues and recombined into fibrils with controlling the solutions. Later studies help understand the composition and structure of binding sites on the collagen monomers. Collagen is synthesized as a soluble precursor, procollagen, which supports collagen self-assembly. Since collagen fibrils have almost 50 binding components in vivo, the definite requirement to generate fibrillogenesis in vivo is still cryptic. With acidic or saline solution, collagen can be extracted from tissues and rearrange into fibril by changing temperature or pH value. Experiments discovered attractive force between collagen monomers which helps the rearrangement. Collagen serves as a precursor, procollagen, in synthesizing reaction, which identifies self-polymerization of collagen.


Natural processes

There are over 30 collagens in nature that are similar in chemical composition but differ in terms of crystal structure. By far,
collagen I Type I collagen is the most abundant collagen of the human body. It forms large, eosinophilic fibers known as collagen fibers. It is present in scar tissue, the end product when tissue heals by repair, as well as tendons, ligaments, the endomys ...
and II are the most abundant. They initiatively form fibrils in vitro, while fibronectin, fibronectin-binding, collagen-binding integrins and collagen V are essential for collagen I forming and collagen XI for collagen II forming. Therefore, cellular mechanisms play key role in the protein self-assembly process.


In animals


Collagen

Collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole ...
is the major structural protein outside cells in many connective tissues of animals. As the primary component of connective tissue, it has the largest amount among protein in mammals, occupying 25% to 35% of all protein content in the body. The fibrils in collagen are packed in a crimp structure. The stress/strain curve of collagen, such as tendon, can be subdivided into several regions. The region of small strains, "toe" region, corresponds to the removal of a macroscopic crimp, uncrimping, in the collagen fibrils, visible in light microscope. At larger strains, "heel" and "linear" region, there's no further structural change visible. Tropocollagen is the molecular component fiber, consisting of three left handed polypeptide chains (red, green, blue) coiled around each other, forming a right-handed triple helix.


Actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over ...
and
myosin Myosins () are a superfamily of motor proteins best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility. The first myosin ...

Muscles contract and stretch via the steerable sliding/grasping of the
myosin Myosins () are a superfamily of motor proteins best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility. The first myosin ...
interacting with
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over ...
fibers. Actin consists of two polypeptides in a helix and myosin has a small heart-shaped structure, cross-bridge. The bind and unbind processes of cross-bridge attaching on actin filament help relative movement of these collagens and hence the whole muscle.


Elastin Elastin is a protein that in humans is encoded by the ''ELN'' gene. Elastin is a key component of the extracellular matrix in gnathostomes (jawed vertebrates). It is highly elastic and present in connective tissue allowing many tissues in the bod ...
and
keratin Keratin () is one of a family of structural fibrous proteins also known as ''scleroproteins''. Alpha-keratin (α-keratin) is a type of keratin found in vertebrates. It is the key structural material making up scales, hair, nails, feathers, ho ...

Elastin Elastin is a protein that in humans is encoded by the ''ELN'' gene. Elastin is a key component of the extracellular matrix in gnathostomes (jawed vertebrates). It is highly elastic and present in connective tissue allowing many tissues in the bod ...
is a fibrous protein common in various soft tissues, like skin, blood vessels and lung tissue. Each monomer connects with each other, forming a 3D network, with ability to endure over 200% strain before deformation.
Keratin Keratin () is one of a family of structural fibrous proteins also known as ''scleroproteins''. Alpha-keratin (α-keratin) is a type of keratin found in vertebrates. It is the key structural material making up scales, hair, nails, feathers, ho ...
is a structural protein mainly found in hair, nails, hooves, horns, quills. Basically keratin is formed by polypeptide chains, which coil into α-helices with sulfur cross-links or bond into β-sheets linked by hydrogen bonding. β-keratin, which is tougher than α-conformation, is more common in birds and reptiles.


Resilin Resilin is an elastomeric protein found in many insects and other arthropods. It provides soft rubber-elasticity to mechanically active organs and tissue; for example, it enables insects of many species to jump or pivot their wings efficiently ...
and
spider silk Spider silk is a protein fibre spun by spiders. Spiders use their silk to make Spider web, webs or other structures, which function as sticky nets to catch other animals, or as nests or cocoons to protect their offspring, or to wrap up prey. ...

Resilin Resilin is an elastomeric protein found in many insects and other arthropods. It provides soft rubber-elasticity to mechanically active organs and tissue; for example, it enables insects of many species to jump or pivot their wings efficiently ...
is an elastomeric insect protein, consisting of both α-helices and β-sheets structure. It is one of the most resilient protein in nature. It has a low stiffness ~0.6MPa but a high energy restoring percentage ~98%, and efficiently helps flying insects to flap wings or fleas to jump.
Spider silk Spider silk is a protein fibre spun by spiders. Spiders use their silk to make Spider web, webs or other structures, which function as sticky nets to catch other animals, or as nests or cocoons to protect their offspring, or to wrap up prey. ...
fibril is composed of stiff crystallized β-sheets structure, responsible for strength, and amorphous matrix surrounding, improving toughness and elongation ability. It has exceptionally high tensile strength and ductility, with respectively low density, compared to other natural fibril. Its feature varies from different kinds of spider for different utility.


In plants


Cellulose

The primary cell wall derives its notable tensile strength from cellulose molecules, or long-chains of glucose residues stabilized by hydrogen bonding. Cellulose chains are observed to align in overlapping parallel arrays, with the similar polarity forming a cellulose microfibril. In plants, these cellulose microfibrils arrange themselves into layers, formally known as lamellae, and are stabilized in the cell wall by surface, long cross-linking
glycan molecules The terms glycans and polysaccharides are defined by IUPAC as synonyms meaning "compounds consisting of a large number of monosaccharides linked glycosidically". However, in practice the term glycan may also be used to refer to the carbohydrate ...
. Glycan molecules increase the complexity of the potential networks plant-based cellulose can configure itself into. Coextensive in the primary cell wall to both cellulose microfibrils and complementary glycan networks, is
pectin Pectin ( grc, πηκτικός ': "congealed" and "curdled") is a heteropolysaccharide, a structural acid contained in the primary lamella, in the middle lamella, and in the cell walls of terrestrial plants. The principal, chemical component of ...
which is a polysaccharide that contains many negatively charged galacturonic acid units. Additionally, cellulose microfibrils also contribute to the shape of the plant via controlled-cell expansion. The stereoscopic arrangement of microfibrils in the cell wall create systems of
turgor pressure Turgor pressure is the force within the cell that pushes the plasma membrane against the cell wall. It is also called ''hydrostatic pressure'', and is defined as the pressure in a fluid measured at a certain point within itself when at equilibri ...
which ultimately leads to cellular growth and expansion. Cellulose microfibrils are unique matrix macromolecules, in that they are assembled by cellulose synthase enzymes located on the extracellular surface of the plasma membrane. It is believed that the plant can “anticipate their future morphology by controlling the orientation of microfibrils” by a mechanism where cellulose microfibrils are arranged atop a cortical array of microtubules.


Amylose

Stirring of a given sample of amylose is said to form
fibrillar crystals Fibrils (from the Latin ''fibra'') are structural biological materials found in nearly all living organisms. Not to be confused with fibers or protein filament, filaments, fibrils tend to have diameters ranging from 10-100 nanometers (whereas ...
which are said to precipitate out of the mother liquor. These long fibrils can be imaged using electron microscopy revealing transverse striations resembling a
shish-kebab Shish kebab is a popular meal of skewered and Mangal (barbecue), grilled cubes of meat. It can be found in Mediterranean cuisine and is similar to or synonymous with dishes called shashlik and khorovats, found in the Caucasus region. It is one o ...
. Amylose fibrils are categorized with having one of two morphologies: ones with small rodlike fibrils and others with lath-shaped crystals.


Wood

The fibrillar structure of wood is said to play a significant role in both the mechanical stability and ability of wood to possess channels to transport minerals and water. Sprucewood (Picea abies), among others, are reported to possess cellulose fibrils with a normalized diameter of 2.5 nm. There is also a reported link between the age of the wood and the spiral angle of the fibrils with respect to the longitudinal direction. Earlywood is said to have a consistent 4.6 ± 0.6° rest angle, whereas latewood is said to have a transition region from 4.6° to 19.8 ± 0.7°. In latewood, the two spiral angle regions of cellulose fibrils are not continuous, meaning that there are two independent tracheid structures in “older” trees meeting different mechanical requirements. Moreover, longitudinally oriented fibrils improve tensile strength, whereas the addition of 20° tilted fibrils, exclusive to latewood tracheids, provides stability against compression.


Biomimicry and fibrils


Self-cleaning properties

In order to mimic the strong adhesion, easy detachment, and self-cleaning properties of a gecko toe pad, a fibrillar-based adhesive can be created. These performance features stem from the underlying hierarchical structure which consists of a million microfibrils called
setae In biology, setae (singular seta ; from the Latin word for "bristle") are any of a number of different bristle- or hair-like structures on living organisms. Animal setae Protostomes Annelid setae are stiff bristles present on the body. Th ...
which further consists of billions of nano-sized branches called spatulae. Mimicking this phenomenon involves four distinct design steps: # Making a vertically aligned micro-/nano- fibrillar arrays # Creating various tip shapes # Including anisotropic geometry # Building hierarchy.


A mature bone matrix

In order to mimic a mature bone matrix, self-assembled fibrils can be used to align a given mineral matrix. This is accomplished using a self-assembling molecule with a hydrophobic alkyl tail and a hydrophilic oligopeptide head. These molecules form micellar structures in situ, and disulfide bridges at low pH, leading to the formation and crystallization of 200 kDa polymeric nanofibrils. The mineral matrix ultimately interacts with the synthetic fibril via a phosphoserine residue which results in mineral nucleation and growth.


See also

*
Fibre Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate ...
* Microfibril *
Myofibril A myofibril (also known as a muscle fibril or sarcostyle) is a basic rod-like organelle of a muscle cell. Skeletal muscles are composed of long, tubular cells known as muscle fibers, and these cells contain many chains of myofibrils. Each myofib ...
*
Neurofibril Neurofilaments (NF) are classed as type IV intermediate filaments found in the cytoplasm of neurons. They are protein polymers measuring 10 nm in diameter and many micrometers in length. Together with microtubules (~25 nm) and ...
* Fibrillogenesis * Protein filament


References

{{reflist Fibers