In the
mathematical field of
graph theory, the Fibonacci cubes or Fibonacci networks are a family of
undirected graphs with rich
recursive properties derived from its origin in
number theory. Mathematically they are similar to the
hypercube graphs, but with a
Fibonacci number of
vertices. Fibonacci cubes were first explicitly defined in in the context of interconnection topologies for connecting parallel or distributed systems. They have also been applied in
chemical graph theory
Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena.
The pioneers of chemical graph theory are Alexandru Balaban, Ante Graovac, Iván Gutman, Haruo Hosoy ...
.
The Fibonacci cube may be defined in terms of
Fibonacci codes and
Hamming distance,
independent sets of vertices in
path graphs, or via
distributive lattices.
Definition
Like the hypercube graph, the vertices of the Fibonacci cube of order ''n'' may be labeled with
bitstrings of length ''n'', in such a way that two vertices are adjacent whenever their labels differ in a single bit. However, in a Fibonacci cube, the only labels that are allowed are bitstrings with no two consecutive 1 bits. If the labels of the hypercube are interpreted as
binary number
A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" ( one).
The base-2 numeral system is a positional notatio ...
s, the labels in the Fibonacci cube are a subset, the
fibbinary numbers. There are ''F''
''n'' + 2 labels possible, where ''F''
''n'' denotes the ''n''th Fibonacci number, and therefore there are ''F''
''n'' + 2 vertices in the Fibonacci cube of order ''n''.

The nodes of such a network may be assigned consecutive integers from 0 to ''F''
''n'' + 2 − 1; the bitstrings corresponding to these numbers are given by their
Zeckendorf representation
In mathematics, Zeckendorf's theorem, named after Belgian amateur mathematician Edouard Zeckendorf, is a theorem about the representation of integers as sums of Fibonacci numbers.
Zeckendorf's theorem states that every positive integer can be rep ...
s.
Algebraic structure
The Fibonacci cube of order ''n'' is the
simplex graph of the
complement graph of an ''n''-vertex path graph.
[, p.3.] That is, each vertex in the Fibonacci cube represents a
clique in the path complement graph, or equivalently an
independent set in the path itself; two Fibonacci cube vertices are adjacent if the cliques or independent sets that they represent differ by the addition or removal of a single element. Therefore, like other simplex graphs, Fibonacci cubes are
median graphs and more generally
partial cubes. The median of any three vertices in a Fibonacci cube may be found by computing the bitwise
majority function of the three labels; if each of the three labels has no two consecutive 1 bits, the same is true of their majority.
The Fibonacci cube is also the graph of a
distributive lattice that may be obtained via
Birkhoff's representation theorem
:''This is about lattice theory. For other similarly named results, see Birkhoff's theorem (disambiguation).''
In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive latti ...
from a
zigzag poset, a
partially ordered set defined by an alternating sequence of order relations ''a'' < ''b'' > ''c'' < ''d'' > ''e'' < ''f'' > ... There is also an alternative graph-theoretic description of the same lattice: the independent sets of any
bipartite graph
In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V, that is every edge connects a vertex in U to one in V. Vertex sets U and V are ...
may be given a partial order in which one independent set is less than another if they differ by removing elements from one side of the bipartition and adding elements to the other side of the bipartition; with this order, the independent sets form a distributive lattice, and applying this construction to a path graph results in the lattice associated with the Fibonacci cube.
Properties and algorithms
The Fibonacci cube of order ''n'' may be partitioned into a Fibonacci cube of order ''n'' − 1 (the nodes with labels beginning with a 0 bit) and a Fibonacci cube of order ''n'' − 2 (the nodes with labels beginning with a 1 bit).
Every Fibonacci cube has a
Hamiltonian path. More specifically, there exists a path that obeys the partition described above: it visits the nodes with first bit 0 and the nodes with first bit 1 in two contiguous subsequences. Within these two subsequences, the path can be constructed recursively by the same rule, linking the two subsequences at the ends of the subsequences at which the second bit is 0. Thus, e.g., in the Fibonacci cube of order 4, the sequence constructed in this way is (0100-0101-0001-0000-0010)-(1010-1000-1001), where the parentheses demark the subsequences within the two subgraphs of the partition. Fibonacci cubes with an even number of nodes greater than two have a
Hamiltonian cycle.
[.]
investigate the radius and
independence number of Fibonacci cubes. Because these graphs are bipartite and have Hamiltonian paths, their maximum independent sets have a number of vertices that is equal to half of the number of vertices in the whole graph, rounded up to the nearest integer. The diameter of a Fibonacci cube of order ''n'' is ''n'', and its radius is ''n''/2 (again, rounded up to the nearest integer).
showed that it is possible to test whether a graph is a Fibonacci cube in time near-linear in its size.
Applications
and suggested using Fibonacci cubes as a
network topology in
parallel computing
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different fo ...
. As a communications network, the Fibonacci cube has beneficial properties similar to those of the hypercube: the number of incident edges per vertex is at most ''n''/2 and the diameter of the network is at most ''n'', both proportional to the logarithm of the number of vertices, and the ability of the network to be partitioned into smaller networks of the same type allows it to be split among multiple parallel computation tasks.
Fibonacci cubes also support efficient protocols for
routing
Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone netw ...
and
broadcasting in distributed computations.
[; .]
apply Fibonacci cubes in
chemical graph theory
Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena.
The pioneers of chemical graph theory are Alexandru Balaban, Ante Graovac, Iván Gutman, Haruo Hosoy ...
as a description of the family of
perfect matchings of certain molecular graphs. For a molecular structure described by a
planar graph
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross ...
''G'', the
resonance graph or (''Z''-transformation graph) of ''G'' is a graph whose vertices describe perfect matchings of ''G'' and whose edges connect pairs of perfect matchings whose
symmetric difference is an interior face of ''G''.
Polycyclic aromatic hydrocarbons may be described as subgraphs of a hexagonal tiling of the plane, and the resonance graph describes possible double-bond structures of these molecules. As show, hydrocarbons formed by chains of hexagons, linked edge-to-edge with no three adjacent hexagons in a line, have resonance graphs that are exactly the Fibonacci graphs.
More generally described the class of planar bipartite graphs that have Fibonacci cubes as their resonance graphs.
Related graphs
Generalized Fibonacci cubes were presented by based on the k-th order Fibonacci numbers, which were later further extended to a larger class of networks called the Linear Recursive Networks by based on more general forms of linear recursions. modified the second order Fibonacci cubes based on different initial conditions. Another related graph is the
Lucas cube
Lucas or LUCAS may refer to:
People
* Lucas (surname)
* Lucas (given name)
Arts and entertainment
* Luca Family Singers, also known as "lucas ligner en torsk"
* ''Lucas'' (album) (2007), an album by Skeletons and the Kings of All Cities
* ''Lu ...
, a graph with a
Lucas number of vertices defined from the Fibonacci cube by forbidding a 1 bit in both the first and last positions of each bitstring; investigated the coloring properties of both Fibonacci cubes and Lucas cubes.
Notes
References
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.
* Exercise 3.23a, page 157.
*.
*.
*.
*.
{{refend
Parametric families of graphs
Fibonacci numbers
Network topology