Fatty Acyl-CoA
   HOME

TheInfoList



OR:

Fatty acyl-CoA esters are fatty acid derivatives formed of one fatty acid, a 3'-phospho-AMP linked to phosphorylated pantothenic acid (vitamin B5) and
cysteamine Cysteamine is a chemical compound that can be biosynthesized in mammals, including humans, by the degradation of coenzyme A. The intermediate pantetheine is broken down into cysteamine and pantothenic acid. It is the biosynthetic precursor to ...
. Long-chain acyl-CoA esters are substrates for a number of important enzymatic reactions and play a central role in the regulation of metabolism as allosteric regulators of several enzymes. To participate in specific metabolic processes, fatty acids must first be activated by being joined in
thioester In organic chemistry, thioesters are organosulfur compounds with the functional group . They are analogous to carboxylate esters () with the sulfur in the thioester playing the role of the linking oxygen in the carboxylate ester, as implied by t ...
linkage (R-CO-SCoA) to the -SH group of
coenzyme A Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. All genomes sequenced to date encode enzymes that use coenzyme A as a subs ...
, where R is a fatty carbon chain. The thioester bond is a high energy bond. The activation reaction normally occurs in the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
or the outer
mitochondrial membrane A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used t ...
. This is an ATP-requiring reaction (fatty acyl-CoA synthase), yielding AMP and pyrophosphate (PPi). Different enzymes are specific for fatty acids of different chain length. Then, the acyl CoA esters are transported in
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
. They are converted to fatty acyl carnitine by
carnitine acyltransferase I Carnitine O-palmitoyltransferase (also called carnitine palmitoyltransferase) is a mitochondrial transferase enzyme () involved in the metabolism of palmitoylcarnitine into palmitoyl-CoA. A related transferase is carnitine acyltransferase. Mol ...
, an enzyme of the inner leaflet of the outer
mitochondrial membrane A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used t ...
. Fatty acyl carnitine is then transported by an antiport in exchange for free carnitine to the inner surface of the inner mitochondrial membrane. There carnitine acyltransferase II reverses the process, producing fatty acyl-CoA and carnitine. This shuttle mechanism is required only for longer chain fatty acids. Once inside the mitochondrial matrix, the fatty acyl-CoA derivatives are degraded by a series of reactions that release acetyl-CoA and leads to the production of NADH and FADH2. There are four steps in fatty acid oxidation pathway; oxidation, hydration, oxidation, and thiolysis. It requires 7 rounds of this pathway to degrade palmitate (a C16 fatty acid).


References

{{Reflist Thioesters of coenzyme A