Effective Diffusion Coefficient
   HOME

TheInfoList



OR:

The effective diffusion coefficient of a in
atomic diffusion Atomic may refer to: * Of or relating to the atom, the smallest particle of a chemical element that retains its chemical properties * Atomic physics, the study of the atom * Atomic Age, also known as the "Atomic Era" * Atomic scale, distances com ...
of solid
polycrystalline A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains. Bacillite is a type of crystallite. It is rodlike with parallel longulites. Stru ...
materials like
metal alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
s is often represented as a
weighted average The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others. The ...
of the grain boundary diffusion coefficient and the
lattice diffusion coefficient Lattice diffusion (also called bulk or volume diffusion) refers to atomic diffusion within a crystalline lattice.P. Heitjans, J. Karger, Ed, “Diffusion in condensed matter: Methods, Materials, Models,” 2nd edition, Birkhauser, 2005, pp. 1-965 ...
.P. Heitjans, J. Karger, Ed, “Diffusion in condensed matter: Methods, Materials, Models,” 2nd edition, Birkhauser, 2005, pp. 1-965. Diffusion along both the grain boundary and in the lattice may be modeled with an
Arrhenius equation In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 18 ...
. The ratio of the grain boundary diffusion activation energy over the lattice diffusion activation energy is usually 0.4–0.6, so as temperature is lowered, the grain boundary diffusion component increases. Increasing temperature often allows for increased grain size, and the lattice diffusion component increases with increasing temperature, so often at 0.8 Tmelt (of an alloy), the grain boundary component can be neglected.


Modeling

The effective diffusion coefficient can be modeled using Hart's equation when lattice diffusion is dominant (type A kinetics): : D_\text = f D_\text + (1-f) D_\ell where :D_\text = effective diffusion coefficient :D_\text = grain boundary diffusion coefficient :D_\ell = lattice diffusion coefficient :f = \frac : q = value based on grain shape, 1 for parallel grains, 3 for square grains : d = average grain size :\delta = grain boundary width, often assumed to be 0.5 nm Grain boundary diffusion is significant in
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
metals below about 0.8 Tmelt (Absolute). Line dislocations and other crystalline defects can become significant below ~0.4 Tmelt in FCC metals.


References


See also

*
Kirkendall effect The Kirkendall effect is the motion of the interface between two metals that occurs as a consequence of the difference in diffusion rates of the metal atoms. The effect can be observed for example by placing insoluble markers at the interface betwee ...
*
Phase transformations in solids Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform *Phase space, a mathematica ...
*
Mass diffusivity Diffusivity, mass diffusivity or diffusion coefficient is a proportionality constant between the molar flux due to molecular diffusion and the gradient in the concentration of the species (or the driving force for diffusion). Diffusivity is enco ...
{{Materials-stub Diffusion