HOME

TheInfoList




Earth is the third
planet A planet is an astronomical body orbiting a star or Stellar evolution#Stellar remnants, stellar remnant that is massive enough to be Hydrostatic equilibrium, rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and ...

planet
from the
Sun The Sun is the star A star is an astronomical object consisting of a luminous spheroid of plasma (physics), plasma held together by its own gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many othe ...

Sun
and the only
astronomical object In , an astronomical object or celestial object is a naturally occurring , association, or structure that exists in the . In , the terms ''object'' and ''body'' are often used interchangeably. However, an astronomical body or celestial body i ...
known to harbour and support
life Life is a characteristic that distinguishes physical entities A bubble of exhaled gas in water In common usage and classical mechanics, a physical object or physical body (or simply an object or body) is a collection of matter within a ...

life
. 29.2% of Earth's surface is land consisting of continents and islands. The remaining 70.8% is covered with water, mostly by oceans, seas,
gulf A gulf is a large inlet from the ocean into the landmass, typically with a narrower opening than a bay (geography), bay, but that is not observable in all geographic areas so named. The term gulf was traditionally used for large highly-indented ...

gulf
s, and other salt-water bodies, but also by lakes, rivers, and other freshwater, which together constitute the
hydrosphere The hydrosphere (from Greek#REDIRECT Greek Greek may refer to: Greece Anything of, from, or related to Greece Greece ( el, Ελλάδα, , ), officially the Hellenic Republic, is a country located in Southeast Europe. Its population is app ...
. Much of Earth's polar regions is covered in ice. Earth's outer layer is divided into several rigid
tectonic plates This is a list of tectonic plates on Earth's surface. Tectonic plates are pieces of Earth's crust 350px, Plates in the crust of Earth Earth's crust is a thin shell on the outside of Earth, accounting for less than 1% of Earth's volume. It is ...
ist/sup> that migrate across the surface over many millions of years, while its interior remains active with a solid iron
inner core Earth's inner core is the innermost structure of Earth, geologic layer of planet Earth. It is primarily a solid ball (mathematics), ball with a radius of about , which is about 20% of Earth radius, Earth's radius or 70% of the Moon's radius. Th ...
, a liquid
outer core Earth's outer core is a fluid layer about thick and composed of mostly iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transi ...
that generates
Earth's magnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field A magnetic field is a vector field In vector calculus and physics, a vector field is an assignment of a vector to each point in a subset of space. Fo ...
, and a convective mantle that drives plate tectonics.
Earth's atmosphere The atmosphere of Earth is the layer of gas Gas is one of the four fundamental states of matter (the others being solid Solid is one of the four fundamental states of matter (the others being liquid, gas and plasma). The mo ...

Earth's atmosphere
consists mostly of
nitrogen Nitrogen is the chemical element upright=1.0, 500px, The chemical elements ordered by link=Periodic table In chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science ...

nitrogen
and
oxygen Oxygen is the chemical element Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements In chemistry, an element is a pure substance consisting only of atoms that all have the same ...

oxygen
. More solar energy is received by tropical regions than polar regions and is redistributed by
atmospheric An atmosphere (from the greek words ἀτμός ''(atmos)'', meaning 'vapour', and σφαῖρα ''(sphaira)'', meaning 'ball' or 'sphere') is a layer or a set of layers of gases surrounding a planet A planet is an astronomical body orbi ...

atmospheric
and
ocean circulation An ocean current is a continuous, directed movement of sea water generated by a number of forces acting upon the water, including wind Wind is the flow of gases on a large scale. On the surface of the Earth, wind consists of the bulk moveme ...
.
Greenhouse gases A greenhouse gas (sometimes abbreviated GHG) is a gas that absorbs and emits radiant energy In physics Physics (from grc, φυσική (ἐπιστήμη), physikḗ (epistḗmē), knowledge of nature, from ''phýsis'' 'nature' ...

Greenhouse gases
also play an important role in regulating the surface temperature. A region's climate is not only determined by latitude, but also by elevation and proximity to moderating oceans, among other factors. Severe weather, such as tropical cyclones, thunderstorms, and heatwaves, occurs in most areas and greatly impacts life.
Earth's gravity The gravity of Earth, denoted by , is the that is imparted to objects due to the combined effect of (from within ) and the (from the ). In this acceleration is measured in (in symbols, /2 or m·s−2) or equivalently in per (N/kg or N· ...
interacts with other objects in space, especially the
Moon The Moon is Earth's only natural satellite. At about one-quarter the diameter of Earth (comparable to the width of Australia (continent), Australia), it is the largest natural satellite in the Solar System relative to the size of its plane ...

Moon
, which is Earth's only
permanent Permanent may refer to: Art and entertainment *Permanent (film), ''Permanent'' (film), a 2017 American film *Permanent (Joy Division album), ''Permanent'' (Joy Division album) *Permanent (song), "Permanent" (song), by David Cook Other uses *Perma ...
natural satellite A natural satellite is in the most common usage, an astronomical body Astronomy (from el, ἀστρονομία, literally meaning the science that studies the laws of the stars) is a natural science Natural science is a branch ...

natural satellite
. Earth orbits around the Sun in about 365.25 days. Earth's axis of rotation is tilted with respect to its orbital plane, producing seasons on Earth. The
gravitational Gravity (), or gravitation, is a natural phenomenon by which all things with mass Mass is both a property Property (''latin: Res Privata'') in the Abstract and concrete, abstract is what belongs to or with something, whether as an ...
interaction between Earth and the Moon causes tides, stabilizes Earth's orientation on its axis, and gradually slows its rotation. Earth is the densest planet in the
Solar System The Solar SystemCapitalization Capitalization ( North American English) or capitalisation ( British English) is writing a word with its first letter as a capital letter (uppercase letter) and the remaining letters in lower case, in writin ...

Solar System
and the largest and most massive of the four
rocky planet A terrestrial planet, telluric planet, or rocky planet is a planet that is composed primarily of silicate Rock (geology), rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun ...
s. According to
radiometric dating Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks In geology Geology (from the Ancient Greek γῆ, ''gē'' ("earth") and -λoγία, ''-logia'', ("study of", "di ...
estimation and other evidence, Earth formed over 4.5 billion years ago. Within the first billion years of Earth's history, life appeared in the oceans and began to affect Earth's atmosphere and surface, leading to the proliferation of
anaerobic Anaerobic means "living, active, occurring, or existing in the absence of free oxygen", as opposed to aerobic which means "living, active, or occurring only in the presence of oxygen." Anaerobic may also refer to: *Anaerobic adhesive, a bonding ag ...
and,
later Later may refer to: * Future The future is the time after the past and present. Its arrival is considered inevitable due to the existence of time and the laws of physics. Due to the apparent nature of reality and the unavoidability of the fu ...
,
aerobic organisms Image:Anaerobic.png, 300px, Aerobic and anaerobic bacteria can be identified by growing them in test tubes of thioglycollate broth: 1: Obligate aerobes need oxygen because they cannot ferment or respire anaerobically. They gather at the top of the ...
. Some geological evidence indicates that life may have arisen as early as 4.1 billion years ago. Since then, the combination of Earth's distance from the Sun, physical properties, and geological history have allowed life to evolve and thrive. In the history of life on Earth,
biodiversity Biodiversity is the biological variety and Genetic variability, variability of life, life on Earth. Biodiversity is a measure of variation at the Genetics, genetic, species, and ecosystem level. Terrestrial biodiversity is usually greater near ...

biodiversity
has gone through long periods of expansion, occasionally punctuated by
mass extinction An extinction event (also known as a mass extinction or biotic crisis) is a widespread and rapid decrease in the biodiversity Biodiversity is the biological variety and Genetic variability, variability of life, life on Earth. Biodiversity is ...
s. More than 99% of all species that ever lived on Earth are extinct. Almost 8 billion
human Humans (''Homo sapiens'') are the most abundant and widespread species In biology Biology is the natural science that studies life and living organisms, including their anatomy, physical structure, Biochemistry, chemical processes ...

human
s live on Earth and depend on its
biosphere The biosphere (from βίος ''bíos'' "life" and σφαῖρα ''sphaira'' "sphere"), also known as the ecosphere (from Greek οἶκος ''oîkos'' "environment" and σφαῖρα), is the worldwide sum of all s. It can also be termed the zo ...
and natural resources for their survival. Humans increasingly impact Earth's surface, hydrology, atmospheric processes, and other life.


Etymology

The
modern English Modern English (sometimes New English or NE (ME) as opposed to Middle English Middle English (abbreviated to ME) was a form of the English language spoken after the Norman conquest of England, Norman conquest (1066) until the late 15th cen ...

modern English
word ''Earth'' developed, via
Middle English Middle English (abbreviated to ME) was a form of the English language spoken after the Norman conquest of England, Norman conquest (1066) until the late 15th century. The English language underwent distinct variations and developments following ...
, from an
Old English Old English (, ), or Anglo-Saxon, is the earliest recorded form of the English language English is a West Germanic language of the Indo-European language family The Indo-European languages are a language family A language ...
noun most often spelled '. It has cognates in every
Germanic language The Germanic languages are a branch of the Indo-European The Indo-European languages are a language family native to western and southern Eurasia. It comprises most of the languages of Europe together with those of the northern Indian su ...

Germanic language
, and their ancestral root has been reconstructed as *''erþō''. In its earliest attestation, the word ''eorðe'' was already being used to translate the many senses of
Latin Latin (, or , ) is a classical language A classical language is a language A language is a structured system of communication Communication (from Latin ''communicare'', meaning "to share" or "to be in relation with") is "an appa ...
' and
Greek#REDIRECT Greek Greek may refer to: Greece Anything of, from, or related to Greece Greece ( el, Ελλάδα, , ), officially the Hellenic Republic, is a country located in Southeast Europe. Its population is approximately 10.7 million as of ...
''gē'': the ground, its
soil Surface-water- gley developed in glacial till, Northern Ireland.">Northern_Ireland.html" ;"title="glacial till, Northern Ireland">glacial till, Northern Ireland. Soil is a mixture of organic matter, minerals, gases, liquids, and organisms tha ...

soil
, dry land, the human world, the surface of the world (including the sea), and the globe itself. As with Roman
Terra Terra is the Latin/Italian/Portuguese term for Earth or land. Terra may also refer to: * Terra (mythology) In ancient Roman religion and myth Myth is a folklore genre consisting of narratives that play a fundamental role in a society, su ...
/Tellūs and Greek
Gaia In Greek mythology Greek mythology is the body of myth Myth is a folklore genre Folklore is the expressive body of culture shared by a particular group of people; it encompasses the tradition A tradition is a belief A be ...
, Earth may have been a personified goddess in
Germanic paganism Germanic paganism included various religious Religion is a social Social organisms, including humans, live collectively in interacting populations. This interaction is considered social whether they are aware of it or not, and whether the ...
: late
Norse mythology Norse or Scandinavian mythology is the body of myths Myth is a folklore genre Folklore is the expressive body of culture shared by a particular group of people; it encompasses the traditions common to that culture, subculture or group. ...
included
Jörð Jörð (Old Norse: wikt:jǫrð, Jǫrð ; "Soil, earth") is the personification of Soil, earth and a goddess in Norse mythology. She is the mother of the thunder god Thor, and a sexual partner of Odin. Her name is often employed in Skald, skaldic p ...
('Earth'), a giantess often given as the mother of
Thor In Germanic mythology Germanic mythology consists of the body of myth Myth is a folklore genre consisting of narratives that play a fundamental role in a society, such as foundational tales or origin myths. The main characters in myth ...

Thor
.. Trans. Angela Hall as ''Dictionary of Northern Mythology'', D.S. Brewer, 2007. . Historically, ''earth'' has been written in lowercase. From
early Middle English Middle English (abbreviated to ME) was a form of the English language spoken after the Norman conquest of England, Norman conquest (1066) until the late 15th century. English language underwent distinct variations and developments following the O ...
, its definite sense as "the globe" was expressed as ''the'' earth. By
Early Modern English Early Modern English or Early New English (sometimes abbreviated EModE, EMnE, or EME) is the stage of the English language English is a of the , originally spoken by the inhabitants of . It is named after the , one of the ancient th ...
, many nouns were capitalized, and ''the earth'' was also written ''the Earth'', particularly when referenced along with other heavenly bodies. More recently, the name is sometimes simply given as ''Earth'', by analogy with the names of the , though ''earth'' and forms with ''the'' remain common.
House stylesHouse style may refer to: * Standards for writing as specified in the internal style guide of a particular institution, for example, a book publishing company, newspaper, professional organization, or university * Standards for illustration or graphi ...
now vary:
Oxford spelling Oxford spelling (also ''Oxford English Dictionary'' spelling, Oxford style, or Oxford English spelling) is a spelling standard that prescribes the use of British spelling Despite the various English dialects spoken from country to count ...
recognizes the lowercase form as the most common, with the capitalized form an acceptable variant. Another convention capitalizes "Earth" when appearing as a name (for example, "Earth's atmosphere") but writes it in lowercase when preceded by ''the'' (for example, "the atmosphere of the earth"). It almost always appears in lowercase in colloquial expressions such as "what on earth are you doing?"''The New Oxford Dictionary of English'', "earth". Oxford University Press (Oxford), 1998. . Occasionally, the name ''Terra'' is used in scientific writing and especially in science fiction to distinguish humanity's inhabited planet from others, while in poetry ''Tellus'' has been used to denote personification of the Earth. ''Terra'' is also the name of the planet in some
Romance languages The Romance languages, less commonly Latin or Neo-Latin languages, are the modern languages that evolved from Vulgar Latin Vulgar Latin, also known as Popular or Colloquial Latin is a range of informal sociolects of Latin Latin (, or , ) ...

Romance languages
(languages that evolved from
Latin Latin (, or , ) is a classical language A classical language is a language A language is a structured system of communication Communication (from Latin ''communicare'', meaning "to share" or "to be in relation with") is "an appa ...
) like
Italian Italian may refer to: * Anything of, from, or related to the country and nation of Italy ** Italians, an ethnic group or simply a citizen of the Italian Republic ** Italian language, a Romance language *** Regional Italian, regional variants of the ...

Italian
and
Portuguese Portuguese may refer to: * anything of, from, or related to the country and nation of Portugal ** Portuguese cuisine, traditional foods ** Portuguese language, a Romance language *** Portuguese dialects, variants of the Portuguese language ** Portug ...

Portuguese
, while in other Romance languages the word gave rise to names with slightly altered spellings (like the
Spanish Spanish may refer to: * Items from or related to Spain: **Spaniards, a nation and ethnic group indigenous to Spain **Spanish language **Spanish cuisine Other places * Spanish, Ontario, Canada * Spanish River (disambiguation), the name of several ...

Spanish
''Tierra'' and the ''Terre''). The Latinate form ''Gæa'' or ''Gaea'' () of the Greek poetic name ''
Gaia In Greek mythology Greek mythology is the body of myth Myth is a folklore genre Folklore is the expressive body of culture shared by a particular group of people; it encompasses the tradition A tradition is a belief A be ...

Gaia
'' (; or ) is rare, though the alternative spelling ''Gaia'' has become common due to the
Gaia hypothesis The Gaia Paradigm , also known as the Gaia theory or the Gaia principle, proposes that living organism In biology, an organism (from Ancient Greek, Greek: ὀργανισμός, ''organismos'') is any individual contiguous system that embo ...
, in which case its pronunciation is rather than the more classical English . There are a number of adjectives for the planet Earth. From ''Earth'' itself comes ''earthly''. From the Latin ''Terra'' comes ''terran'' , terrestrial , and (via French) ''terrene'' , and from the Latin ''Tellus'' comes ''tellurian'' and ''telluric''.


Chronology


Formation

The oldest material found in the Solar System is dated to Ga (billion years) ago. By the primordial Earth had formed. The bodies in the Solar System formed and evolved with the Sun. In theory, a
solar nebula The formation and evolution of the Solar System The Solar SystemCapitalization Capitalization ( North American English) or capitalisation ( British English) is writing a word with its first letter as a capital letter (uppercase letter) ...
partitions a volume out of a
molecular cloud A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, ...
by gravitational collapse, which begins to spin and flatten into a
circumstellar disk A circumstellar disc (or circumstellar disk) is a torus In geometry Geometry (from the grc, γεωμετρία; ''wikt:γῆ, geo-'' "earth", ''wikt:μέτρον, -metron'' "measurement") is, with arithmetic, one of the oldest branc ...
, and then the planets grow out of that disk with the Sun. A nebula contains gas, ice grains, and
dust Dust is made of s of solid . On Earth, it generally consists of particles in the that come from various sources such as lifted by wind (an ), , and . Dust in homes is composed of about 20–50% dead . The rest, and in offices, and other ...
(including
primordial nuclide In geochemistry Geochemistry is the science Science (from the Latin word ''scientia'', meaning "knowledge") is a systematic enterprise that Scientific method, builds and Taxonomy (general), organizes knowledge in the form of Testability, ...
s). According to nebular theory,
planetesimal 486958 Arrokoth, the first pristine planetesimal visited by a spacecraft. Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to fo ...
s formed by
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucle ...
, with the primordial Earth being estimated as likely taking anywhere from 70 to 100 million years to form. Estimates of the age of the Moon range from 4.5 Ga to significantly younger. A leading hypothesis is that it was formed by accretion from material loosed from Earth after a
Mars Mars is the fourth planet A planet is an astronomical body orbiting a star or Stellar evolution#Stellar remnants, stellar remnant that is massive enough to be Hydrostatic equilibrium, rounded by its own gravity, is not massive enough to ...

Mars
-sized object with about 10% of Earth's mass, named
Theia In Greek mythology Greek mythology is the body of s originally told by the , and a of . These stories concern the and , the lives and activities of , , and , and the origins and significance of the ancient Greeks' own and practices. Mo ...
, collided with Earth. It hit Earth with a glancing blow and some of its mass merged with Earth. Between approximately 4.1 and , numerous during the
Late Heavy Bombardment The Late Heavy Bombardment (LHB), or lunar cataclysm, is a hypothesized event thought to have occurred approximately 4.1 to 3.8 billion year A year is the orbital period of a planetary body, for example, the Earth, moving in Earth's orbit, ...
caused significant changes to the greater surface environment of the Moon and, by inference, to that of Earth.


Geological history

Earth's atmosphere The atmosphere of Earth is the layer of gas Gas is one of the four fundamental states of matter (the others being solid Solid is one of the four fundamental states of matter (the others being liquid, gas and plasma). The mo ...
and
ocean The ocean (also the sea The sea, connected as the world ocean or simply the ocean The ocean (also the sea or the world ocean) is the body of salt water which covers approximately 71% of the surface of the Earth.
s were formed by
volcanic activity A volcano is a rupture in the Crust (geology), crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and Volcanic gas, gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often fo ...
and
outgassingOutgassing (sometimes called offgassing, particularly when in reference to indoor air quality) is the release of a gas that was dissolved, trapped, frozen, or absorbed in some material. Outgassing can include sublimation and evaporation (which ...

outgassing
. Water vapor from these sources condensed into the oceans, augmented by water and ice from asteroids,
protoplanet A protoplanet is a large planetary embryo that originated within a protoplanetary disc and has undergone internal melting to produce a differentiated interior. Protoplanets are thought to form out of kilometer-sized planetesimal 486958 Arrokoth, ...
s, and
comet A comet is an icy, small Solar System body A small Solar System body (SSSB) is an object in the Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astr ...

comet
s. Sufficient water to fill the oceans may have been on Earth since it formed. In this model, atmospheric
greenhouse gas A greenhouse gas (GHG or GhG) is a gas Gas is one of the four fundamental states of matter (the others being solid, liquid A liquid is a nearly incompressible fluid In physics, a fluid is a substance that continually Deformat ...
es kept the oceans from freezing when the newly forming Sun had only 70% of its current luminosity. By ,
Earth's magnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field A magnetic field is a vector field In vector calculus and physics, a vector field is an assignment of a vector to each point in a subset of space. Fo ...
was established, which helped prevent the atmosphere from being stripped away by the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the solar corona, corona. This plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . ...

solar wind
. As the molten outer layer of Earth cooled it formed the first solid crust, which is thought to have been
mafic A mafic mineral or rock is a silicate mineral Silicate minerals are rock-forming mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composit ...
in composition. The first
continental crust 350px, The thickness of Crust (geology)#Earth's crust, Earth's crust (km) Continental crust is the layer of Igneous rock, igneous, Sedimentary rock, sedimentary, and metamorphic rocks that forms the geological continents and the areas of shallo ...
, which was more
felsic In geology Geology (from the Ancient Greek γῆ, ''gē'' ("earth") and -λoγία, ''-logia'', ("study of", "discourse")) is an Earth science concerned with the solid Earth, the rock (geology), rocks of which it is composed, and the processes ...
in composition, formed by the partial melting of this mafic crust. The presence of grains of the mineral zircon of Hadean age in
Eoarchean The Eoarchean (; also spelled Eoarchaean) is the first era An era is a span of time defined for the purposes of chronology or historiography, as in the regnal eras in the history of a given monarchy, a calendar era used for a given calendar, o ...
sedimentary rock Sedimentary rocks are types of rock Rock most often refers to: * Rock (geology) A rock is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its Chemical compoun ...

sedimentary rock
s suggests that at least some felsic crust existed as early as , only after Earth's formation. There are two main models of how this initial small volume of continental crust evolved to reach its current abundance: (1) a relatively steady growth up to the present day, which is supported by the radiometric dating of continental crust globally and (2) an initial rapid growth in the volume of continental crust during the
Archean The Archean Eon ( , also spelled Archaean or Archæan) is one of the four geology, geologic eon (geology), eons of Earth, Earth's history, occurring (4 to 2.5 Billion years, Gya). During the Archean, the Earth's Crust (geology), crust had ...

Archean
, forming the bulk of the continental crust that now exists, which is supported by isotopic evidence from
hafnium Hafnium is a chemical element Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements In chemistry, an element is a pure substance consisting only of atoms that all have the same num ...

hafnium
in
zircon Zircon ( or ) is a belonging to the group of s and is a source of the metal . Its chemical name is , and its corresponding chemical formula is . A common showing some of the range of substitution in zircon is (Zr1–y, y)(SiO4)1–x(OH)4x ...

zircon
s and
neodymium Neodymium is a chemical element with the Symbol (chemistry), symbol Nd and atomic number 60. Neodymium belongs to the lanthanide series and is a rare-earth element. It is a hard, slightly malleable silvery metal that quickly tarnishes in air and mo ...

neodymium
in sedimentary rocks. The two models and the data that support them can be reconciled by large-scale recycling of the continental crust, particularly during the early stages of Earth's history. New continental crust forms as a result of
plate tectonics upright=1.35, Diagram of the internal layering of Earth showing the lithosphere above the asthenosphere (not to scale) Plate tectonics (from the la, label=Late Latin Late Latin ( la, Latinitas serior) is the scholarly name for the written L ...
, a process ultimately driven by the continuous loss of heat from Earth's interior. Over of hundreds of millions of years, tectonic forces have caused areas of continental crust to group together to form
supercontinent In geology Geology (from the Ancient Greek γῆ, ''gē'' ("earth") and -λoγία, ''-logia'', ("study of", "discourse")) is an Earth science concerned with the solid Earth, the rock (geology), rocks of which it is composed, and the proces ...
s that have subsequently broken apart. At approximately , one of the earliest known supercontinents,
Rodinia Rodinia (from the Russian родить, ''rodit'', meaning "to beget, to give birth", or родина, ''rodina'', meaning "motherland, birthplace") was a Neoproterozoic supercontinent that assembled 1.1–0.9 billion years ago and broke up 750 ...

Rodinia
, began to break apart. The continents later recombined to form
Pannotia Pannotia (from Greek: ''pan- Pan may refer to: Prefix *''Pan-'', a prefix from the Greek language, Greek πᾶν, ''pan'', meaning "all", "of everything", or "involving all members" of a group ** , most but not all using the prefix People * Pan ...

Pannotia
at , then finally
Pangaea Pangaea or Pangea () was a supercontinent In geology Geology (from the Ancient Greek γῆ, ''gē'' ("earth") and -λoγία, ''-logia'', ("study of", "discourse")) is an Earth science concerned with the solid Earth, the rock (geology) ...

Pangaea
, which also began to break apart at . The most recent pattern of
ice age An ice age is a long period of reduction in the temperature of Earth Earth is the third planet from the Sun and the only astronomical object known to harbour and support life. 29.2% of Earth's surface is land consisting of continents an ...

ice age
s began about , and then intensified during the
Pleistocene The Pleistocene ( , often referred to as the ''Ice Age'') is the geological Epoch (geology), epoch that lasted from about 2,580,000 to 11,700 years ago, spanning the earth’s most recent period of repeated glaciations. Before a change finally ...
about . High- and middle-latitude regions have since undergone repeated cycles of glaciation and thaw, repeating about every 21,000, 41,000 and 100,000 years. The Last Glacial Period, colloquially called the "last ice age", covered large parts of the continents, up to the middle latitudes, in ice and ended about 11,700 years ago.


Origin of life and evolution

Chemical reaction A chemical reaction is a process that leads to the chemical transformation of one set of chemical substance A chemical substance is a form of matter In classical physics and general chemistry, matter is any substance that has mass and t ...

Chemical reaction
s led to the first self-replicating molecules about four billion years ago. A half billion years later, the last common ancestor of all current life arose. The evolution of
photosynthesis Photosynthesis is a process used by plants and other organisms to into that, through , can later be released to fuel the organism's activities. Some of this chemical energy is stored in molecules, such as s and es, which are synthesized fro ...

photosynthesis
allowed the Sun's energy to be harvested directly by life forms. The resultant
molecular oxygenThere are several known allotropes Allotropy or allotropism () is the property of some chemical element Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements In chemistry, an elemen ...

molecular oxygen
() accumulated in the atmosphere and due to interaction with ultraviolet solar radiation, formed a protective () in the upper atmosphere. The incorporation of smaller cells within larger ones resulted in the called
eukaryote Eukaryotes () are organism In biology Biology is the natural science that studies life and living organisms, including their anatomy, physical structure, Biochemistry, chemical processes, Molecular biology, molecular interact ...

eukaryote
s. True multicellular organisms formed as cells within
colonies In political science, a colony is a territory subject to a form of foreign rule. Though dominated by the foreign colonizers, colonies remain separate from the administration of the original country of the colonizers, the metropole, metropolitan ...
became increasingly specialized. Aided by the absorption of harmful
ultraviolet radiation Ultraviolet (UV) is a form of electromagnetic radiation In physics Physics is the natural science that studies matter, its Elementary particle, fundamental constituents, its Motion (physics), motion and behavior through Spacetime, ...
by the ozone layer, life colonized Earth's surface. Among the earliest
fossil A fossil (from Classical Latin Classical Latin is the form of Latin language Latin (, or , ) is a classical language A classical language is a language A language is a structured system of communication used by humans, inc ...

fossil
evidence for
life Life is a characteristic that distinguishes physical entities A bubble of exhaled gas in water In common usage and classical mechanics, a physical object or physical body (or simply an object or body) is a collection of matter within a ...

life
is
microbial mat The cyanobacterial algal mat, salty lake on the White Sea">algal_mat.html" ;"title="cyanobacterial algal mat">cyanobacterial algal mat, salty lake on the White Sea seaside A microbial mat is a multi-layered sheet of microorganisms, mainly bacteria ...
fossils found in 3.48 billion-year-old
sandstone Sandstone is a clastic sedimentary rock of a clast (sand grain), derived from a basalt Basalt (, ) is a fine-grained extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron ('' mafic ' ...

sandstone
in
Western Australia Western Australia (abbreviated as WA) is a state State may refer to: Arts, entertainment, and media Literature * ''State Magazine'', a monthly magazine published by the U.S. Department of State * The State (newspaper), ''The State'' (newspape ...

Western Australia
,
biogenic A biogenic substance is a product made by or of life forms. While the term originally was specific to metabolite compounds that had toxic effects on other organisms, it has developed to encompass any constituents, secretions, and metabolites of pla ...
graphite found in 3.7 billion-year-old metasedimentary rocks in Western Greenland, and remains of biotic material found in 4.1 billion-year-old rocks in Western Australia. Early edition, published online before print. The Earliest known life forms, earliest direct evidence of life on Earth is contained in 3.45 billion-year-old Australian rocks showing fossils of microorganisms. During the Neoproterozoic, , much of Earth might have been covered in ice. This hypothesis has been termed "Snowball Earth", and it is of particular interest because it preceded the Cambrian explosion, when multicellular life forms significantly increased in complexity. Following the Cambrian explosion, , there have been at least five major Extinction event, mass extinctions and many minor ones. Apart from the proposed current Holocene extinction event, the Cretaceous–Paleogene extinction event, most recent was , when Chicxulub impactor, an asteroid impact triggered the extinction of the non-avian dinosaurs and other large reptiles, but largely spared small animals such as insects, mammals, lizards and birds. Mammalian life has diversified over the past , and several million years ago an African ape gained the ability to stand upright. This facilitated tool use and encouraged communication that provided the nutrition and stimulation needed for a larger brain, which led to the Human evolution, evolution of humans. The History of agriculture, development of agriculture, and then List of ancient civilizations, civilization, led to humans having an Human impact on the environment, influence on Earth and the nature and quantity of other life forms that continues to this day.


Future

Because carbon dioxide () has a long lifespan in the atmosphere, moderate human emissions may postpone the next glacial inception by 100,000 years. Earth's expected long-term future is tied to that of the Sun. Over the next , solar luminosity will increase by 10%, and over the next by 40%. Earth's increasing surface temperature will accelerate the carbonate–silicate cycle, inorganic carbon cycle, reducing concentration to levels lethally low for plants ( for C4 carbon fixation, C4 photosynthesis) in approximately . The lack of vegetation will result in the loss of oxygen in the atmosphere, making animal life impossible. Due to the increased luminosity, Earth's mean temperature may reach in 1.5 billion years, and all ocean water will evaporate and be lost to space, which may trigger a runaway greenhouse effect, within an estimated 1.6 to 3 billion years. Even if the Sun were stable, a fraction of the water in the modern oceans will descend to the mantle, due to reduced steam venting from mid-ocean ridges. The Sun will stellar evolution, evolve to become a red giant in about . Models predict that the Sun will expand to roughly , about 250 times its present radius. Earth's fate is less clear. As a red giant, the Sun will lose roughly 30% of its mass, so, without tidal effects, Earth will move to an orbit from the Sun when the star reaches its maximum radius, otherwise, with tidal effects, it may enter the Sun's atmosphere and be vaporized.


Physical characteristics


Size and shape

The shape of Earth is nearly spherical. There is a small flattening at the poles and equatorial bulge, bulging around the equator due to Earth's rotation. Therefore, a better approximation of Earth's shape is an oblate spheroid, whose equatorial diameter is larger than the Geographical pole, pole-to-pole diameter. The average diameter of the reference spheroid is . Local topography deviates from this idealized spheroid, although on a global scale these deviations are small compared to Earth's radius: the maximum deviation of only 0.17% is at the Mariana Trench ( below local sea level), whereas Mount Everest ( above local sea level) represents a deviation of 0.14%. The point on the surface farthest from Earth's center of mass is the summit of the equatorial Chimborazo (volcano), Chimborazo volcano in Ecuador (). In geodesy, the exact shape that Earth's oceans would adopt in the absence of land and perturbations such as tides and winds is called the geoid. More precisely, the geoid is the surface of gravitational equipotential at mean sea level (MSL). Sea surface topography are water deviations from MSL, analogous to land topography.


Chemical composition

Earth mass, Earth's mass is approximately (5,970 yottagram, Yg). It is composed mostly of iron (32.1%),
oxygen Oxygen is the chemical element Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements In chemistry, an element is a pure substance consisting only of atoms that all have the same ...

oxygen
(30.1%), silicon (15.1%), magnesium (13.9%), sulfur (2.9%), nickel (1.8%), calcium (1.5%), and aluminum (1.4%), with the remaining 1.2% consisting of trace amounts of other elements. Due to mass segregation, the core region is estimated to be primarily composed of iron (88.8%), with smaller amounts of nickel (5.8%), sulfur (4.5%), and less than 1% trace elements. The most common rock constituents of the crust are nearly all oxides: chlorine, sulfur, and fluorine are the important exceptions to this and their total amount in any rock is usually much less than 1%. Over 99% of the crust is composed of 11 oxides, principally silica, alumina, iron oxides, lime, magnesia, potash, and soda.


Internal structure

Earth's interior, like that of the other terrestrial planets, is divided into layers by their chemical or physical (Rheology, rheological) properties. The outer layer is a chemically distinct Silicate minerals, silicate solid crust, which is underlain by a highly viscous solid mantle. The crust is separated from the mantle by the Mohorovičić discontinuity. The thickness of the crust varies from about under the oceans to for the continents. The crust and the cold, rigid, top of the upper mantle are collectively known as the lithosphere, which is divided into independently moving tectonic plates. Beneath the lithosphere is the asthenosphere, a relatively low-viscosity layer on which the lithosphere rides. Important changes in crystal structure within the mantle occur at below the surface, spanning a Transition zone (Earth), transition zone that separates the upper and lower mantle. Beneath the mantle, an extremely low viscosity liquid
outer core Earth's outer core is a fluid layer about thick and composed of mostly iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transi ...
lies above a solid Earth's inner core, inner core. Earth's inner core may be rotating at a slightly higher angular velocity than the remainder of the planet, advancing by 0.1–0.5° per year, although both somewhat higher and much lower rates have also been proposed. The radius of the inner core is about one-fifth of that of Earth. Density increases with depth, as described in the table on the right.


Heat

The major heat-producing isotopes within Earth are potassium-40, uranium-238, and thorium-232. At the center, the temperature may be up to , and the pressure could reach . Because much of the heat is provided by radioactive decay, scientists postulate that early in Earth's history, before isotopes with short half-lives were depleted, Earth's heat production was much higher. At approximately , twice the present-day heat would have been produced, increasing the rates of mantle convection and plate tectonics, and allowing the production of uncommon igneous rocks such as komatiites that are rarely formed today. The mean heat loss from Earth is , for a global heat loss of . A portion of the core's thermal energy is transported toward the crust by mantle plumes, a form of convection consisting of upwellings of higher-temperature rock. These plumes can produce Hotspot (geology), hotspots and flood basalts. More of the heat in Earth is lost through plate tectonics, by mantle upwelling associated with mid-ocean ridges. The final major mode of heat loss is through conduction through the lithosphere, the majority of which occurs under the oceans because the crust there is much thinner than that of the continents.


Tectonic plates

Earth's mechanically rigid outer layer, the lithosphere, is divided into tectonic plates. These plates are rigid segments that move relative to each other at one of three boundaries types: at Convergent boundary, convergent boundaries, two plates come together; at Divergent boundary, divergent boundaries, two plates are pulled apart; and at Transform boundary, transform boundaries, two plates slide past one another laterally. Along these plate boundaries, earthquakes, Volcanism, volcanic activity, Orogeny, mountain-building, and oceanic trench formation can occur. The tectonic plates ride on top of the asthenosphere, the solid but less-viscous part of the upper mantle that can flow and move along with the plates. As the tectonic plates migrate, oceanic crust is Subduction, subducted under the leading edges of the plates at convergent boundaries. At the same time, the upwelling of mantle material at divergent boundaries creates mid-ocean ridges. The combination of these processes recycles the oceanic crust back into the mantle. Due to this recycling, most of the ocean floor is less than old. The oldest oceanic crust is located in the Western Pacific and is estimated to be old. By comparison, the oldest dated
continental crust 350px, The thickness of Crust (geology)#Earth's crust, Earth's crust (km) Continental crust is the layer of Igneous rock, igneous, Sedimentary rock, sedimentary, and metamorphic rocks that forms the geological continents and the areas of shallo ...
is , although zircons have been found preserved as clasts within Eoarchean sedimentary rocks that give ages up to , indicating that at least some continental crust existed at that time. The seven major plates are the Pacific Plate, Pacific, North American Plate, North American, Eurasian Plate, Eurasian, African Plate, African, Antarctic Plate, Antarctic, Indo-Australian Plate, Indo-Australian, and South American Plate, South American. Other notable plates include the Arabian Plate, the Caribbean Plate, the Nazca Plate off the west coast of South America and the Scotia Plate in the southern Atlantic Ocean. The Australian Plate fused with the Indian Plate between . The fastest-moving plates are the oceanic plates, with the Cocos Plate advancing at a rate of and the Pacific Plate moving . At the other extreme, the slowest-moving plate is the South American Plate, progressing at a typical rate of .


Surface

The total Spheroid#Area, surface area of Earth is about . Of this, 70.8%, or , is below sea level and covered by ocean water. Below the ocean's surface are much of the continental shelf, mountains, volcanoes, oceanic trenches, submarine canyons, oceanic plateaus, abyssal plains, and a globe-spanning mid-ocean ridge system. The remaining 29.2%, or , not covered by water has terrain that varies greatly from place to place and consists of mountains, deserts, plains, plateaus, and other landforms. The elevation of the land surface varies from the low point of at the Dead Sea, to a maximum altitude of at the top of Mount Everest. The mean height of land above sea level is about . The continental crust consists of lower density material such as the igneous rocks granite and andesite. Less common is basalt, a denser volcanic rock that is the primary constituent of the ocean floors. Sedimentary rock is formed from the accumulation of sediment that becomes buried and Diagenesis, compacted together. Nearly 75% of the continental surfaces are covered by sedimentary rocks, although they form about 5% of the crust. The third form of rock material found on Earth is metamorphic rock, which is created from the transformation of pre-existing rock types through high pressures, high temperatures, or both. The most abundant silicate minerals on Earth's surface include quartz, feldspars, amphibole, mica, pyroxene and olivine. Common carbonate minerals include calcite (found in limestone) and Dolomite (mineral), dolomite. Erosion and tectonics, Types of volcanic eruptions, volcanic eruptions, flooding, weathering, glaciation, the growth of coral reefs, and meteorite impacts are among the processes that constantly reshape Earth's surface over geological time. The pedosphere is the outermost layer of Earth's continental surface and is composed of soil and subject to pedogenesis, soil formation processes. The total arable land is 10.9% of the land surface, with 1.3% being permanent cropland. Close to 40% of Earth's land surface is used for agriculture, or an estimated of cropland and of pastureland.


Gravitational field

The gravity of Earth is the acceleration that is imparted to objects due to the distribution of mass within Earth. Near Earth's surface, gravitational acceleration is approximately . Local differences in topography, geology, and deeper tectonic structure cause local and broad, regional differences in Earth's gravitational field, known as Gravity anomaly, gravity anomalies.


Magnetic field

The main part of Earth's magnetic field is generated in the core, the site of a Dynamo theory, dynamo process that converts the kinetic energy of thermally and compositionally driven convection into electrical and magnetic field energy. The field extends outwards from the core, through the mantle, and up to Earth's surface, where it is, approximately, a dipole. The poles of the dipole are located close to Earth's geographic poles. At the equator of the magnetic field, the magnetic-field strength at the surface is , with a magnetic dipole moment of at epoch 2000, decreasing nearly 6% per century. The convection movements in the core are chaotic; the magnetic poles drift and periodically change alignment. This causes Geomagnetic secular variation, secular variation of the main field and geomagnetic reversal, field reversals at irregular intervals averaging a few times every million years. The most recent reversal occurred approximately 700,000 years ago.


Magnetosphere

The extent of Earth's magnetic field in space defines the magnetosphere. Ions and electrons of the solar wind are deflected by the magnetosphere; solar wind pressure compresses the dayside of the magnetosphere, to about 10 Earth radii, and extends the nightside magnetosphere into a long tail. Because the velocity of the solar wind is greater than the speed at which waves propagate through the solar wind, a supersonic bow shock precedes the dayside magnetosphere within the solar wind. Charged particles are contained within the magnetosphere; the plasmasphere is defined by low-energy particles that essentially follow magnetic field lines as Earth rotates. The ring current is defined by medium-energy particles that drift relative to the geomagnetic field, but with paths that are still dominated by the magnetic field, and the Van Allen radiation belts are formed by high-energy particles whose motion is essentially random, but contained in the magnetosphere. During magnetic storms and substorms, charged particles can be deflected from the outer magnetosphere and especially the magnetotail, directed along field lines into Earth's ionosphere, where atmospheric atoms can be excited and ionized, causing the Aurora (astronomy), aurora.


Orbit and rotation


Rotation

Earth's rotation period relative to the Sun—its mean solar day—is of mean solar time (). Because Earth's solar day is now slightly longer than it was during the 19th century due to tidal acceleration, tidal deceleration, each day varies between longer than the mean solar day. Earth's rotation period relative to the fixed stars, called its ''stellar day'' by the International Earth Rotation and Reference Systems Service (IERS), is of mean solar time (UT1), or Earth's rotation period relative to the precession (astronomy), precessing or moving mean March equinox (when the Sun is at 90° on the equator), is of mean solar time (UT1) . Thus the sidereal day is shorter than the stellar day by about 8.4 ms. Apart from meteors within the atmosphere and low-orbiting satellites, the main apparent motion of celestial bodies in Earth's sky is to the west at a rate of 15°/h = 15'/min. For bodies near the celestial equator, this is equivalent to an apparent diameter of the Sun or the Moon every two minutes; from Earth's surface, the apparent sizes of the Sun and the Moon are approximately the same.


Orbit

Earth orbits the Sun at an average distance of about every 365.2564 mean solar days, or one sidereal year. This gives an apparent movement of the Sun eastward with respect to the stars at a rate of about 1°/day, which is one apparent Sun or Moon diameter every 12 hours. Due to this motion, on average it takes 24 hours—a Solar time, solar day—for Earth to complete a full rotation about its axis so that the Sun returns to the Meridian (astronomy), meridian. The orbital speed of Earth averages about , which is fast enough to travel a distance equal to Earth's diameter, about , in seven minutes, and the distance to the Moon, , in about 3.5 hours. The Moon and Earth orbit a common barycenter every 27.32 days relative to the background stars. When combined with the Earth-Moon system's common orbit around the Sun, the period of the synodic month, from new moon to new moon, is 29.53 days. Viewed from the celestial pole, celestial north pole, the motion of Earth, the Moon, and their axial rotations are all counterclockwise. Viewed from a vantage point above the Sun and Earth's north poles, Earth orbits in a counterclockwise direction about the Sun. The orbital and axial planes are not precisely aligned: Earth's axial tilt, axis is tilted some 23.44 degrees from the perpendicular to the Earth-Sun plane (the ecliptic), and the Earth-Moon plane is tilted up to ±5.1 degrees against the Earth-Sun plane. Without this tilt, there would be an eclipse every two weeks, alternating between lunar eclipses and solar eclipses. The Hill sphere, or the sphere of Gravity, gravitational influence, of Earth is about in radius. This is the maximum distance at which Earth's gravitational influence is stronger than the more distant Sun and planets. Objects must orbit Earth within this radius, or they can become unbound by the gravitational perturbation of the Sun. Earth, along with the Solar System, is situated in the Milky Way and orbits about 28,000 light-years from its center. It is about 20 light-years above the galactic plane in the Orion Arm.


Axial tilt and seasons

The axial tilt of Earth is approximately 23.439281° with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and in the Southern Hemisphere when the Tropic of Capricorn faces the Sun. In each instance, winter occurs simultaneously in the opposite hemisphere. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. Above the Arctic Circle and below the Antarctic Circle there is no daylight at all for part of the year, causing a polar night, and this night extends for several months at the poles themselves. These same latitudes also experience a midnight sun, where the sun remains visible all day. By astronomical convention, the four seasons can be determined by the solstices—the points in the orbit of maximum axial tilt toward or away from the Sun—and the equinoxes, when Earth's rotational axis is aligned with its orbital axis. In the Northern Hemisphere, winter solstice currently occurs around 21 December; summer solstice is near 21 June, spring equinox is around 20 March and September equinox, autumnal equinox is about 22 or 23 September. In the Southern Hemisphere, the situation is reversed, with the summer and winter solstices exchanged and the spring and autumnal equinox dates swapped. The angle of Earth's axial tilt is relatively stable over long periods of time. Its axial tilt does undergo nutation; a slight, irregular motion with a main period of 18.6 years. The orientation (rather than the angle) of Earth's axis also changes over time, axial precession, precessing around in a complete circle over each 25,800-year cycle; this precession is the reason for the difference between a sidereal year and a tropical year. Both of these motions are caused by the varying attraction of the Sun and the Moon on Earth's equatorial bulge. The poles also migrate a few meters across Earth's surface. This polar motion has multiple, cyclical components, which collectively are termed quasiperiodic motion. In addition to an annual component to this motion, there is a 14-month cycle called the Chandler wobble. Earth's rotational velocity also varies in a phenomenon known as length-of-day variation. In modern times, Earth's perihelion occurs around 3 January, and its aphelion around 4 July. These dates change over time due to precession and other orbital factors, which follow cyclical patterns known as Milankovitch cycles. The changing Earth-Sun distance causes an increase of about 6.8% in solar energy reaching Earth at perihelion relative to aphelion. Because the Southern Hemisphere is tilted toward the Sun at about the same time that Earth reaches the closest approach to the Sun, the Southern Hemisphere receives slightly more energy from the Sun than does the northern over the course of a year. This effect is much less significant than the total energy change due to the axial tilt, and most of the excess energy is absorbed by the higher proportion of water in the Southern Hemisphere.


Earth-Moon system


Moon

The Moon is a relatively large, Terrestrial planet, terrestrial, planet-like
natural satellite A natural satellite is in the most common usage, an astronomical body Astronomy (from el, ἀστρονομία, literally meaning the science that studies the laws of the stars) is a natural science Natural science is a branch ...

natural satellite
, with a diameter about one-quarter of Earth's. It is the largest moon in the Solar System relative to the size of its planet, although Charon (moon), Charon is larger relative to the dwarf planet Pluto. The natural satellites of other planets are also referred to as "moons", after Earth's. The most widely accepted theory of the Moon's origin, the giant-impact hypothesis, states that it formed from the collision of a Mars-size protoplanet called Theia with the early Earth. This hypothesis explains (among other things) the Moon's relative lack of iron and volatile elements and the fact that its composition is nearly identical to that of Earth's crust. The gravitational attraction between Earth and the Moon causes tides on Earth. The same effect on the Moon has led to its tidal locking: its rotation period is the same as the time it takes to orbit Earth. As a result, it always presents the same face to the planet. As the Moon orbits Earth, different parts of its face are illuminated by the Sun, leading to the lunar phases. Due to their tidal interaction, the Moon recedes from Earth at the rate of approximately . Over millions of years, these tiny modifications—and the lengthening of Earth's day by about 23 Microsecond, µs/yr—add up to significant changes. During the Ediacaran period, for example, (approximately ) there were 400±7 days in a year, with each day lasting 21.9±0.4 hours. The Moon may have dramatically affected the development of life by moderating the planet's climate. Paleontology, Paleontological evidence and computer simulations show that Earth's axial tilt is stabilized by tidal interactions with the Moon. Some theorists think that without this stabilization against the torques applied by the Sun and planets to Earth's equatorial bulge, the rotational axis might be chaotically unstable, exhibiting large changes over millions of years, as is the case for Mars, though this is disputed. Viewed from Earth, the Moon is just far enough away to have almost the same apparent-sized disk as the Sun. The angular size (or solid angle) of these two bodies match because, although the Sun's diameter is about 400 times as large as the Moon's, it is also 400 times more distant. This allows total and annular solar eclipses to occur on Earth.


Asteroids and artificial satellites

Earth's Co-orbital configuration, co-orbital asteroids population consists of quasi-satellites, objects with a horseshoe orbit and Trojan (celestial body), trojans. There are at least five quasi-satellites, including 469219 Kamoʻoalewa. A Earth trojan, trojan asteroid companion, , is Libration, librating around the leading Lagrangian point, Lagrange triangular point, L4, in Earth's orbit around the Sun. The tiny near-Earth asteroid makes close approaches to the Earth–Moon system roughly every twenty years. During these approaches, it can orbit Earth for brief periods of time. , there are 2,666 operational, human-made satellites orbiting Earth. There are also inoperative satellites, including Vanguard 1, the oldest satellite currently in orbit, and over 16,000 pieces of tracked space debris. Earth's largest artificial satellite is the International Space Station.


Hydrosphere

The abundance of water on Earth's surface is a unique feature that distinguishes it from other planets in the Solar System. Earth's hydrosphere consists chiefly of the oceans, but technically includes all water surfaces in the world, including inland seas, lakes, rivers, and underground waters down to a depth of . The mass of the oceans is approximately 1.35 metric tons or about 1/4400 of Earth's total mass. The oceans cover an area of with a mean depth of , resulting in an estimated volume of . If all of Earth's crustal surface were at the same elevation as a smooth sphere, the depth of the resulting world ocean would be . About 97.5% of the water is saline water, saline; the remaining 2.5% is fresh water. Most fresh water, about 68.7%, is present as ice in ice caps and glaciers. In Earth's coldest regions, snow survives over the summer and Ice formation, changes into ice. This accumulated snow and ice eventually forms into glaciers, bodies of ice that flow under the influence of their own gravity. Alpine glaciers form in mountainous areas, whereas vast ice sheets form over land in polar regions. The flow of glaciers erodes the surface changing it dramatically, with the formation of U-shaped valleys and other landforms. Sea ice in the Arctic covers an area about as big as the United States, although it is quickly retreating as a consequence of climate change. The average salinity of Earth's oceans is about 35 grams of salt per kilogram of seawater (3.5% salt). Most of this salt was released from volcanic activity or extracted from cool igneous rocks. The oceans are also a reservoir of dissolved atmospheric gases, which are essential for the survival of many aquatic life forms. Sea water has an important influence on the world's climate, with the oceans acting as a large heat reservoir. Shifts in the oceanic temperature distribution can cause significant weather shifts, such as the El Niño–Southern Oscillation.


Atmosphere

The atmospheric pressure at Earth's sea level averages , with a scale height of about . A dry atmosphere is composed of 78.084%
nitrogen Nitrogen is the chemical element upright=1.0, 500px, The chemical elements ordered by link=Periodic table In chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science ...

nitrogen
, 20.946% oxygen, 0.934% argon, and trace amounts of carbon dioxide and other gaseous molecules. Water vapor content varies between 0.01% and 4% but averages about 1%. The height of the troposphere varies with latitude, ranging between at the poles to at the equator, with some variation resulting from weather and seasonal factors. Earth's
biosphere The biosphere (from βίος ''bíos'' "life" and σφαῖρα ''sphaira'' "sphere"), also known as the ecosphere (from Greek οἶκος ''oîkos'' "environment" and σφαῖρα), is the worldwide sum of all s. It can also be termed the zo ...
has significantly altered its Atmosphere of Earth, atmosphere. Oxygen evolution#Oxygen evolution in nature, Oxygenic photosynthesis evolved , oxygen catastrophe, forming the primarily nitrogen–oxygen atmosphere of today. This change enabled the proliferation of
aerobic organisms Image:Anaerobic.png, 300px, Aerobic and anaerobic bacteria can be identified by growing them in test tubes of thioglycollate broth: 1: Obligate aerobes need oxygen because they cannot ferment or respire anaerobically. They gather at the top of the ...
and, indirectly, the formation of the ozone layer due to the subsequent Ozone–oxygen cycle, conversion of atmospheric into . The ozone layer blocks ultraviolet solar radiation, permitting life on land. Other atmospheric functions important to life include transporting water vapor, providing useful gases, causing small meteors to burn up before they strike the surface, and moderating temperature. This last phenomenon is known as the greenhouse effect: trace molecules within the atmosphere serve to capture thermal energy emitted from the ground, thereby raising the average temperature. Water vapor, carbon dioxide, methane, nitrous oxide, and ozone are the primary greenhouse gases in the atmosphere. Without this heat-retention effect, the average surface temperature would be , in contrast to the current , and life on Earth probably would not exist in its current form.


Weather and climate

Earth's atmosphere has no definite boundary, gradually becoming thinner and fading into outer space. Three-quarters of the atmosphere's mass is contained within the first of the surface; this lowest layer is called the troposphere. Energy from the Sun heats this layer, and the surface below, causing expansion of the air. This lower-density air then rises and is replaced by cooler, higher-density air. The result is atmospheric circulation that drives the weather and climate through redistribution of thermal energy. The primary atmospheric circulation bands consist of the trade winds in the equatorial region below 30° latitude and the westerlies in the mid-latitudes between 30° and 60°. Ocean currents are also important factors in determining climate, particularly the thermohaline circulation that distributes thermal energy from the equatorial oceans to the polar regions. The amount of solar energy reaching the Earth's surface decreases with increasing latitude. At higher latitudes, the sunlight reaches the surface at lower angles, and it must pass through thicker columns of the atmosphere. As a result, the mean annual air temperature at sea level decreases by about per degree of latitude from the equator. Earth's surface can be subdivided into specific latitudinal belts of approximately homogeneous climate. Ranging from the equator to the polar regions, these are the Tropics, tropical (or equatorial), Subtropics, subtropical, temperate and Polar region, polar climates. Further factors that affect a location's climates are its Continentality, proximity to oceans, the oceanic and atmospheric circulation, and topology. Places close to oceans typically have colder summers and warmer winters, due to the fact that oceans can store large amounts of heat. The wind transports the cold or the ocean heat content, heat of the ocean to the land. Atmospheric circulation also plays an important role: San Francisco and Washington DC are both coastal cities at about the same latitude. San Francisco's climate is significantly more moderate as the prevailing wind direction is from sea to land. Finally, temperatures Lapse rate, decrease with height causing mountainous areas to be colder than low-lying areas. Water vapor generated through surface evaporation is transported by circulatory patterns in the atmosphere. When atmospheric conditions permit an uplift of warm, humid air, this water condenses and falls to the surface as precipitation. Most of the water is then transported to lower elevations by river systems and usually returned to the oceans or deposited into lakes. This water cycle is a vital mechanism for supporting life on land and is a primary factor in the erosion of surface features over geological periods. Precipitation patterns vary widely, ranging from several meters of water per year to less than a millimeter. Atmospheric circulation, topographic features, and temperature differences determine the average precipitation that falls in each region. The commonly used Köppen climate classification system has five broad groups (tropical climate, humid tropics, arid, humid subtropical climate, humid middle latitudes, Continental climate, continental and cold polar climate, polar), which are further divided into more specific subtypes. The Köppen system rates regions based on observed temperature and precipitation. Surface Highest temperature recorded on Earth, air temperature can rise to around in hot deserts, such as Death Valley National Park, Death Valley, and Lowest temperature recorded on Earth, can fall as low as in Antarctica.


Upper atmosphere

Above the troposphere, the atmosphere is usually divided into the stratosphere, mesosphere, and thermosphere. Each layer has a different lapse rate, defining the rate of change in temperature with height. Beyond these, the exosphere thins out into the magnetosphere, where the geomagnetic fields interact with the solar wind. Within the stratosphere is the ozone layer, a component that partially shields the surface from ultraviolet light and thus is important for life on Earth. The Kármán line, defined as above Earth's surface, is a working definition for the boundary between the atmosphere and outer space. Thermal energy causes some of the molecules at the outer edge of the atmosphere to increase their velocity to the point where they can escape from Earth's gravity. This causes a slow but steady Atmospheric escape, loss of the atmosphere into space. Because unfixed hydrogen has a low molecular mass, it can achieve escape velocity more readily, and it leaks into outer space at a greater rate than other gases. The leakage of hydrogen into space contributes to the shifting of Earth's atmosphere and surface from an initially redox, reducing state to its current oxidizing one. Photosynthesis provided a source of free oxygen, but the loss of reducing agents such as hydrogen is thought to have been a necessary precondition for the widespread accumulation of oxygen in the atmosphere. Hence the ability of hydrogen to escape from the atmosphere may have influenced the nature of life that developed on Earth. In the current, oxygen-rich atmosphere most hydrogen is converted into water before it has an opportunity to escape. Instead, most of the hydrogen loss comes from the destruction of methane in the upper atmosphere.


Life on Earth

A planet's life forms inhabit ecosystems, whose total forms the
biosphere The biosphere (from βίος ''bíos'' "life" and σφαῖρα ''sphaira'' "sphere"), also known as the ecosphere (from Greek οἶκος ''oîkos'' "environment" and σφαῖρα), is the worldwide sum of all s. It can also be termed the zo ...
. The biosphere is divided into a number of biomes, inhabited by broadly similar plants and animals. On land, biomes are separated primarily by differences in latitude, elevation, height above sea level and humidity. Terrestrial tundra, biomes lying within the Arctic or Antarctic Circles, at Alpine tundra, high altitudes or in desert, extremely arid areas are relatively barren of plant and animal life; Latitudinal gradients in species diversity, species diversity reaches a peak in tropical rainforest, humid lowlands at equatorial latitudes. Estimates of the number of species on Earth today vary; most species have not been Species description, described. Over 99% of all species that ever lived on Earth are extinct. A planet that can sustain life is termed Planetary habitability, habitable, even if life did not originate there. The distance of Earth from the Sun, as well as its orbital eccentricity, rate of rotation, axial tilt, geological history, sustaining atmosphere, and magnetic field all contribute to the current climatic conditions at the surface. Earth provides liquid water—an environment where complex Organic compound, organic molecules can assemble and interact, and sufficient energy to sustain metabolism. Plants can take up nutrients from the atmosphere, soils and water. These nutrients are constantly recycled between different species. Extreme weather, such as tropical cyclones (including hurricanes and typhoons), occurs over most of Earth's surface and has a large impact on life in those areas. From 1980 to 2000, these events caused an average of 11,800 human deaths per year. Many places are subject to earthquakes, landslides, tsunamis, volcanic eruptions, tornadoes, blizzards, floods, droughts, wildfires, and other calamities and disasters. Human impact is felt in many areas due to pollution of the air and water, acid rain, loss of vegetation (overgrazing, deforestation, desertification), loss of wildlife, species extinction, soil degradation, soil depletion and erosion. Human activities release greenhouse gases into the atmosphere which cause global warming. This is driving Effects of climate change, changes such as the Retreat of glaciers since 1850, melting of glaciers and ice sheets, a Sea level rise, global rise in average sea levels, increased risk of drought and wildfires, and migration of species to colder areas.


Human geography

world population, Earth's human population passed seven billion in the early 2010s, and is projected to peak at around ten billion in the second half of the 21st century. Most of the growth is expected to take place in sub-Saharan Africa. Population density#Human population density, Human population density varies widely around the world, but a majority live in Asia. By 2050, 68% of the world's population is expected to be living in urban, rather than rural, areas. The Northern Hemisphere contains 68% of the world's land mass. Partly due to the predominance of land mass, 90% of humans live in the Northern Hemisphere. It is estimated that one-eighth of Earth's surface is suitable for humans to live on—three-quarters of Earth's surface is covered by oceans, leaving one-quarter as land. Half of that land area is desert (14%), high mountains (27%), or other unsuitable terrains. State (polity), States claim the planet's entire land surface, except for parts of Antarctica and a few other Terra nullius, unclaimed areas. Earth has never had a planetwide government, but the United Nations is the leading worldwide intergovernmental organization. The first human to orbit Earth was Yuri Gagarin on 12 April 1961. In total, about 550 people have visited outer space and reached orbit , and, of these, Apollo program, twelve have walked on the Moon. Normally, the only humans in space are those on the International Space Station. The station's List of International Space Station expeditions, crew, made up of six people, is usually replaced every six months. The farthest that humans have traveled from Earth is , achieved during the Apollo 13 mission in 1970.


Natural resources and land use

Earth has resources that have been exploited by humans. Those termed non-renewable resources, such as fossil fuels, are only replenished over geological timescales. Large deposits of fossil fuels are obtained from Earth's crust, consisting of coal, petroleum, and natural gas. These deposits are used by humans both for energy production and as feedstock for chemical production. Mineral ore bodies have also been formed within the crust through a process of ore genesis, resulting from actions of magmatism, erosion, and plate tectonics. These metals and other elements are extracted by mining, a process which often brings environmental and health damage. Earth's biosphere produces many useful biological products for humans, including food, wood, pharmaceuticals, oxygen, and the recycling of organic waste. The land-based ecosystem depends upon topsoil and fresh water, and the oceanic ecosystem depends on dissolved nutrients washed down from the land. In 2019, of Earth's land surface consisted of forest and woodlands, was shrub and grassland, were used for animal feed production and grazing, and were cultivated as croplands. Of the 1214% of ice-free land that is used for croplands, 2 percentage points were irrigated in 2015. Humans use building materials to construct shelters.


Humans and climate

Human activities, such as the burning of fossil fuels, increase the amount of
greenhouse gas A greenhouse gas (GHG or GhG) is a gas Gas is one of the four fundamental states of matter (the others being solid, liquid A liquid is a nearly incompressible fluid In physics, a fluid is a substance that continually Deformat ...
es in the atmosphere, altering Earth's energy budget and climate. It is estimated that global temperatures in the year 2020 were warmer than the preindustrial baseline. This increase in temperature, known as global warming, has contributed to the Retreat of glaciers since 1850, melting of glaciers, Sea level rise, rising sea levels, increased risk of drought and wildfires, and migration of species to colder areas.


Cultural and historical viewpoint

Culture, Human cultures have developed many views of the planet. The standard Astronomical symbols, astronomical symbol of Earth consists of a cross circumscribed circle, circumscribed by a circle, , representing the four corners of the world. (See also Earth symbol.) Earth is sometimes Personification, personified as a deity. In many cultures it is a mother goddess that is also the primary fertility deity. Creation myths in many religions involve the creation of Earth by a supernatural deity or deities. The
Gaia hypothesis The Gaia Paradigm , also known as the Gaia theory or the Gaia principle, proposes that living organism In biology, an organism (from Ancient Greek, Greek: ὀργανισμός, ''organismos'') is any individual contiguous system that embo ...
, developed in the mid-20th century, compared Earth's environments and life as a single self-regulating organism leading to broad stabilization of the conditions of habitability. Images of Earth taken from space, particularly during the Apollo program, have been credited with altering the way that people viewed the planet that they lived on, emphasizing its beauty, uniqueness and apparent fragility. Scientific investigation has resulted in several culturally transformative shifts in people's view of the planet. Initial belief in a flat Earth was gradually displaced in Ancient Greece by the idea of a spherical Earth, which was attributed to both the philosophers Pythagoras and Parmenides. Earth was generally believed to be Geocentric model, the center of the universe until the 16th century, when scientists first concluded that it was heliocentrism, a moving object, comparable to the other planets in the Solar System. It was only during the 19th century that geologists realized Earth's age was at least many millions of years. William Thomson, 1st Baron Kelvin, Lord Kelvin used thermodynamics to estimate the age of Earth to be between 20 million and 400 million years in 1864, sparking a vigorous debate on the subject; it was only when radioactivity and Radiometric dating, radioactive dating were discovered in the late 19th and early 20th centuries that a reliable mechanism for determining Earth's age was established, proving the planet to be billions of years old.


See also


Notes


References


External links


Earth – Profile
– Solar System Exploration – NASA
Earth Observatory
– NASA * Earth – Videos – International Space Station: *
Video (01:02)
– Earth (time-lapse) *
Video (00:27)
– Earth and auroras (time-lapse)
Google Earth 3D
interactive map
Interactive 3D visualization of the Sun, Earth and Moon system

GPlates Portal
(University of Sydney) {{Authority control Earth, Astronomical objects known since antiquity Global natural environment Planets in the circumstellar habitable zone Nature Planets of the Solar System Terrestrial planets