In
mathematics, specifically in
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
,
the interior of a
subset of a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
is the
union
Union commonly refers to:
* Trade union, an organization of workers
* Union (set theory), in mathematics, a fundamental operation on sets
Union may also refer to:
Arts and entertainment
Music
* Union (band), an American rock group
** ''Un ...
of all subsets of that are
open
Open or OPEN may refer to:
Music
* Open (band), Australian pop/rock band
* The Open (band), English indie rock band
* ''Open'' (Blues Image album), 1969
* ''Open'' (Gotthard album), 1999
* ''Open'' (Cowboy Junkies album), 2001
* ''Open'' ( ...
in .
A point that is in the interior of is an interior point of .
The interior of is the
complement
A complement is something that completes something else.
Complement may refer specifically to:
The arts
* Complement (music), an interval that, when added to another, spans an octave
** Aggregate complementation, the separation of pitch-clas ...
of the
closure of the complement of .
In this sense interior and closure are
dual notions.
The exterior of a set is the complement of the closure of ; it consists of the points that are in neither the set nor its
boundary
Boundary or Boundaries may refer to:
* Border, in political geography
Entertainment
* ''Boundaries'' (2016 film), a 2016 Canadian film
* ''Boundaries'' (2018 film), a 2018 American-Canadian road trip film
*Boundary (cricket), the edge of the pla ...
.
The interior, boundary, and exterior of a subset together
partition
Partition may refer to:
Computing Hardware
* Disk partitioning, the division of a hard disk drive
* Memory partition, a subdivision of a computer's memory, usually for use by a single job
Software
* Partition (database), the division of a ...
the whole space into three blocks (or fewer when one or more of these is
empty
Empty may refer to:
Music Albums
* ''Empty'' (God Lives Underwater album) or the title song, 1995
* ''Empty'' (Nils Frahm album), 2020
* ''Empty'' (Tait album) or the title song, 2001
Songs
* "Empty" (The Click Five song), 2007
* ...
).
Definitions
Interior point
If is a subset of a
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
, then is an interior point of if there exists an
open ball
In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them).
These concepts are defi ...
centered at which is completely contained in .
(This is illustrated in the introductory section to this article.)
This definition generalizes to any subset of a
metric space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general set ...
with metric : is an interior point of if there exists
such that is in whenever the distance
This definition generalises to
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
s by replacing "open ball" with "
open set
In mathematics, open sets are a generalization of open intervals in the real line.
In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are su ...
".
Let be a subset of a topological space .
Then is an interior point of if is contained in an open subset of which is completely contained in .
(Equivalently, is an interior point of if is a
neighbourhood
A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; American and British English spelling differences, see spelling differences) is a geographically localised community ...
of .)
Interior of a set
The interior of a subset of a topological space , denoted by
or
or
can be defined in any of the following equivalent ways:
# is the largest open subset of contained (as a subset) in
# is the union of all open sets of contained in
# is the set of all interior points of
Examples
*In any space, the interior of the empty set is the empty set.
*In any space , if
then
*If is the
real line (with the standard topology), then .
*If is the real line
then the interior of the set
of
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s is empty.
*If is the
complex plane then
*In any Euclidean space, the interior of any
finite set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example,
:\
is a finite set with five elements. T ...
is the empty set.
On the set of
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s, one can put other topologies rather than the standard one:
*If is the real numbers
with the
lower limit topology
In mathematics, the lower limit topology or right half-open interval topology is a topology defined on the set \mathbb of real numbers; it is different from the standard topology on \mathbb (generated by the open intervals) and has a number of inte ...
, then .
*If one considers on
the topology in which
every set is open, then .
*If one considers on
the topology in which the only open sets are the empty set and
itself, then is the empty set.
These examples show that the interior of a set depends upon the topology of the underlying space.
The last two examples are special cases of the following.
*In any
discrete space, since every set is open, every set is equal to its interior.
*In any
indiscrete space In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete. Intuitively, this has the conseque ...
, since the only open sets are the empty set and itself,
and for every
proper subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
of ,
is the empty set.
Properties
Let be a topological space and let and be subsets of .
*
is
open
Open or OPEN may refer to:
Music
* Open (band), Australian pop/rock band
* The Open (band), English indie rock band
* ''Open'' (Blues Image album), 1969
* ''Open'' (Gotthard album), 1999
* ''Open'' (Cowboy Junkies album), 2001
* ''Open'' ( ...
in .
* If is open in then
if and only if
*
is an open subset of when is given the
subspace topology
In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced to ...
.
* is an open subset of
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is b ...
* :
*
:
* /:
** However, the interior operator does not distribute over unions since only
is guaranteed in general and equality might not hold.
For example, if
and
then
is a proper subset of
* /: If
then
Other properties include:
* If is closed in and
then
Relationship with closure
The above statements will remain true if all instances of the symbols/words
:"interior", "int", "open", "subset", and "largest"
are respectively replaced by
:"
Closure (topology), closure", "cl", "closed", "superset", and "smallest"
and the following symbols are swapped:
# "
" swapped with "
"
# "
" swapped with "
"
For more details on this matter, see
interior operator below or the article
Kuratowski closure axioms In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first forma ...
.
Interior operator
The interior operator
is dual to the
Closure (topology), closure operator, which is denoted by
or by an overline
—, in the sense that
and also
where
is the
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
containing
and the backslash
denotes
set-theoretic difference.
Therefore, the abstract theory of closure operators and the
Kuratowski closure axioms In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first forma ...
can be readily translated into the language of interior operators, by replacing sets with their complements in
In general, the interior operator does not commute with unions. However, in a
complete metric space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in .
Intuitively, a space is complete if there are no "points missing" from it (inside or at the bou ...
the following result does hold:
The result above implies that every complete metric space is a
Baire space
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior.
According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are e ...
.
Exterior of a set
The exterior of a subset
of a topological space
denoted by
or simply
is the largest open set
disjoint from
namely, it is the union of all open sets in
that are disjoint from
The exterior is the interior of the complement, which is the same as the complement of the closure; in formulas,
Similarly, the interior is the exterior of the complement:
The interior,
boundary
Boundary or Boundaries may refer to:
* Border, in political geography
Entertainment
* ''Boundaries'' (2016 film), a 2016 Canadian film
* ''Boundaries'' (2018 film), a 2018 American-Canadian road trip film
*Boundary (cricket), the edge of the pla ...
, and exterior of a set
together
partition
Partition may refer to:
Computing Hardware
* Disk partitioning, the division of a hard disk drive
* Memory partition, a subdivision of a computer's memory, usually for use by a single job
Software
* Partition (database), the division of a ...
the whole space into three blocks (or fewer when one or more of these is empty):
where
denotes the boundary of
The interior and exterior are always
open
Open or OPEN may refer to:
Music
* Open (band), Australian pop/rock band
* The Open (band), English indie rock band
* ''Open'' (Blues Image album), 1969
* ''Open'' (Gotthard album), 1999
* ''Open'' (Cowboy Junkies album), 2001
* ''Open'' ( ...
, while the boundary is
closed.
Some of the properties of the exterior operator are unlike those of the interior operator:
* The exterior operator reverses inclusions; if
then
* The exterior operator is not
idempotent
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
. It does have the property that
Interior-disjoint shapes
Two shapes and are called ''interior-disjoint'' if the intersection of their interiors is empty.
Interior-disjoint shapes may or may not intersect in their boundary.
See also
*
*
*
*
*
*
References
Bibliography
*
*
*
*
*
*
*
*
*
*
External links
*
{{Topology, expanded
Closure operators
General topology