Excitatory Amino Acid Receptor Ligands
   HOME

TheInfoList



OR:

In
neuroscience Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions and disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, development ...
, an excitatory postsynaptic potential (EPSP) is a
postsynaptic potential Postsynaptic potentials are changes in the membrane potential of the postsynaptic terminal of a chemical synapse. Postsynaptic potentials are graded potentials, and should not be confused with action potentials although their function is to ini ...
that makes the postsynaptic neuron more likely to fire an
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, ...
. This temporary depolarization of postsynaptic
membrane potential Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. That is, there is a difference in the energy required for electric charges ...
, caused by the flow of positively charged
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s into the postsynaptic cell, is a result of opening
ligand-gated ion channel Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in res ...
s. These are the opposite of
inhibitory postsynaptic potential An inhibitory postsynaptic potential (IPSP) is a kind of synaptic potential that makes a postsynaptic neuron less likely to generate an action potential.Purves et al. Neuroscience. 4th ed. Sunderland (MA): Sinauer Associates, Incorporated; 2008. ...
s (IPSPs), which usually result from the flow of ''negative'' ions into the cell or positive ions ''out'' of the cell. EPSPs can also result from a decrease in outgoing positive charges, while IPSPs are sometimes caused by an increase in positive charge outflow. The flow of ions that causes an EPSP is an excitatory postsynaptic current (EPSC). EPSPs, like IPSPs, are graded (i.e. they have an additive effect). When multiple EPSPs occur on a single patch of postsynaptic membrane, their combined effect is the sum of the individual EPSPs. Larger EPSPs result in greater membrane depolarization and thus increase the likelihood that the postsynaptic cell reaches the threshold for firing an
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, ...
. EPSPs in living cells are caused chemically. When an active presynaptic cell releases
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
s into the synapse, some of them bind to
receptors Receptor may refer to: *Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a n ...
on the postsynaptic cell. Many of these receptors contain an
ion channel Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of io ...
capable of passing positively charged ions either into or out of the cell (such receptors are called
ionotropic receptor Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in res ...
s). At excitatory synapses, the ion channel typically allows sodium into the cell, generating an
excitatory postsynaptic current In neuroscience, an excitatory postsynaptic potential (EPSP) is a postsynaptic potential that makes the postsynaptic neuron more likely to fire an action potential. This temporary depolarization of postsynaptic membrane potential, caused by the f ...
. This depolarizing current causes an increase in membrane potential, the EPSP.


Excitatory molecules

The neurotransmitter most often associated with EPSPs is the
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
, and is the main excitatory neurotransmitter in the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all par ...
of
vertebrates Vertebrates () comprise all animal taxa within the subphylum Vertebrata () ( chordates with backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the phylum Chordata, ...
. Its ubiquity at excitatory synapses has led to it being called ''the'' excitatory neurotransmitter. In some
invertebrates Invertebrates are a paraphyletic group of animals that neither possess nor develop a vertebral column (commonly known as a ''backbone'' or ''spine''), derived from the notochord. This is a grouping including all animals apart from the chordate ...
, glutamate is the main excitatory transmitter at the
neuromuscular junction A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber. It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction. Muscles require innervation to ...
. In the
neuromuscular junction A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber. It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction. Muscles require innervation to ...
of vertebrates, EPP (
end-plate potential End plate potentials (EPPs) are the voltages which cause depolarization of skeletal muscle fibers caused by neurotransmitters binding to the postsynaptic membrane in the neuromuscular junction. They are called "end plates" because the postsynapt ...
s) are mediated by the neurotransmitter
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
, which (along with glutamate) is one of the primary transmitters in the central nervous system of invertebrates. At the same time, GABA is the most common neurotransmitter associated with IPSPs in the brain. However, classifying neurotransmitters as such is technically incorrect, as there are several other synaptic factors that help determine a neurotransmitter's excitatory or inhibitory effects.


Miniature EPSPs and quantal analysis

The release of neurotransmitter vesicles from the presynaptic cell is probabilistic. In fact, even without stimulation of the presynaptic cell, a single vesicle will occasionally be released into the synapse, generating miniature EPSPs (mEPSPs).
Bernard Katz Sir Bernard Katz, Fellow of the Royal Society, FRS (; 26 March 1911 – 20 April 2003) was a German-born British people, British physician and biophysics, biophysicist, noted for his work on nerve physiology. He shared the Nobel Prize in Physiol ...
pioneered the study of these mEPSPs at the
neuromuscular junction A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber. It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction. Muscles require innervation to ...
(often called miniature end-plate potentials) in 1951, revealing the
quantal In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
nature of
synaptic transmission Neurotransmission (Latin: ''transmissio'' "passage, crossing" from ''transmittere'' "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), ...
. ''Quantal size'' can then be defined as the synaptic response to the release of neurotransmitter from a single vesicle, while ''quantal content'' is the number of effective vesicles released in response to a nerve impulse. ''Quantal analysis'' refers to the methods used to deduce, for a particular synapse, how many quanta of transmitter are released and what the average effect of each quantum is on the target cell, measured in terms of amount of ions flowing (charge) or change in the membrane potential.


Field EPSPs

EPSPs are usually recorded using intracellular electrodes. The extracellular signal from a single neuron is extremely small and thus next to impossible to record in the human brain. However, in some areas of the brain, such as the
hippocampus The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, a ...
, neurons are arranged in such a way that they all receive synaptic inputs in the same area. Because these neurons are in the same orientation, the extracellular signals from synaptic excitation don't cancel out, but rather add up to give a signal that can easily be recorded with a field electrode. This extracellular signal recorded from a population of neurons is the field potential. In studies of hippocampal
long-term potentiation In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons ...
(LTP), figures are often given showing the field EPSP (fEPSP) in stratum radiatum of CA1 in response to Schaffer collateral stimulation. This is the signal seen by an extracellular electrode placed in the layer of apical dendrites of CA1 pyramidal neurons.Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of physiology, 232(2), 331–356. doi:10.1113/jphysiol.1973.sp010273 The Schaffer collaterals make excitatory synapses onto these dendrites, and so when they are activated, there is a current sink in stratum radiatum: the field EPSP. The voltage deflection recorded during a field EPSP is negative-going, while an intracellularly recorded EPSP is positive-going. This difference is due to the relative flow of ions (primarily the sodium ion) into the cell, which, in the case of the field EPSP is away from the electrode, while for an intracellular EPSPs it is towards the electrode. After a field EPSP, the extracellular electrode may record another change in electrical potential named the
population spike In neuroscience, a population spike (PS) is the shift in electrical potential as a consequence of the movement of ions involved in the generation and propagation of action potentials. Population spikes often reflect synaptically induced firing and t ...
which corresponds to the population of cells firing action potentials (spiking). In other regions than CA1 of the hippocampus, the field EPSP may be far more complex and harder to interpret as the source and sinks are far less defined. In regions such as the
striatum The striatum, or corpus striatum (also called the striate nucleus), is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the forebrain. The striatum is a critical component of the motor and reward systems; receives glutamate ...
, neurotransmitters such as
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic compound, organic chemical of the catecholamine and phenethylamine families. Dopamine const ...
,
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
, GABA and others may also be released and further complicate the interpretation.


See also

*
Glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid (carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinogeni ...
*
Nonspiking neurons Non-spiking neurons are neurons that are located in the central and peripheral nervous systems and function as intermediary relays for sensory-motor neurons. They do not exhibit the characteristic spiking behavior of action potential generating neu ...
*
Summation (neurophysiology) Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultane ...


References


External links


Quantal transmission at neuromuscular synapses
{{DEFAULTSORT:Excitatory Postsynaptic Potential Memory Neurophysiology Graded potentials