In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Euler numbers are a
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
''E
n'' of
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s defined by the
Taylor series
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor serie ...
expansion
:
,
where
is the
hyperbolic cosine function. The Euler numbers are related to a special value of the
Euler polynomials, namely:
:
The Euler numbers appear in the
Taylor series
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor serie ...
expansions of the
secant and
hyperbolic secant
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the un ...
functions. The latter is the function in the definition. They also occur in
combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many appl ...
, specifically when counting the number of
alternating permutation
In combinatorial mathematics, an alternating permutation (or zigzag permutation) of the set is a permutation (arrangement) of those numbers so that each entry is alternately greater or less than the preceding entry. For example, the five alte ...
s of a set with an even number of elements.
Examples
The odd-indexed Euler numbers are all
zero
0 (zero) is a number representing an empty quantity. In place-value notation
Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or ...
. The even-indexed ones have alternating signs. Some values are:
:
Some authors re-index the sequence in order to omit the odd-numbered Euler numbers with value zero, or change all signs to positive . This article adheres to the convention adopted above.
Explicit formulas
In terms of Stirling numbers of the second kind
Following two formulas express the Euler numbers in terms of
Stirling numbers of the second kind
In mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of ''n'' objects into ''k'' non-empty subsets and is denoted by S(n,k) or \textstyle \lef ...
:
:
where
denotes the
Stirling numbers of the second kind
In mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of ''n'' objects into ''k'' non-empty subsets and is denoted by S(n,k) or \textstyle \lef ...
, and
denotes the
rising factorial
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial
:\begin
(x)_n = x^\underline &= \overbrace^ \\
&= \prod_^n(x-k+1) = \prod_^(x-k) \,.
\e ...
.
As a double sum
Following two formulas express the Euler numbers as double sums
:
:
As an iterated sum
An explicit formula for Euler numbers is:
:
where denotes the
imaginary unit
The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition an ...
with .
As a sum over partitions
The Euler number can be expressed as a sum over the even
partitions
Partition may refer to:
Computing Hardware
* Disk partitioning, the division of a hard disk drive
* Memory partition, a subdivision of a computer's memory, usually for use by a single job
Software
* Partition (database), the division of a ...
of ,
:
as well as a sum over the odd partitions of ,
:
where in both cases and
:
is a
multinomial coefficient
In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials.
Theorem
For any positive integer an ...
. The
Kronecker delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:
\delta_ = \begin
0 &\text i \neq j, \\
1 &\ ...
s in the above formulas restrict the sums over the s to and to , respectively.
As an example,
:
As a determinant
is given by the
determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
:
As an integral
is also given by the following integrals:
:
Congruences
W. Zhang obtained the following combinational identities concerning the Euler numbers, for any prime
, we have
:
W. Zhang and Z. Xu
[
] proved that, for any prime
and integer
, we have
:
where
is the
Euler's totient function
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In ot ...
.
Asymptotic approximation
The Euler numbers grow quite rapidly for large indices as
they have the following lower bound
:
Euler zigzag numbers
The
Taylor series
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor serie ...
of
is
:
where is the
Euler zigzag numbers, beginning with
:1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981, 1903757312, 19391512145, 209865342976, 2404879675441, 29088885112832, ...
For all even ,
:
where is the Euler number; and for all odd ,
:
where is the
Bernoulli number
In mathematics, the Bernoulli numbers are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, ...
.
For every ''n'',
:
See also
*
Bell number
In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy ...
*
Bernoulli number
In mathematics, the Bernoulli numbers are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, ...
*
Dirichlet beta function
In mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of per ...
*
Euler–Mascheroni constant
Euler's constant (sometimes also called the Euler–Mascheroni constant) is a mathematical constant usually denoted by the lowercase Greek letter gamma ().
It is defined as the limiting difference between the harmonic series and the natural l ...
References
External links
*
*
{{DEFAULTSORT:Euler Number
Integer sequences
Leonhard Euler