HOME

TheInfoList



OR:

The Euclid–Mullin sequence is an infinite
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
of distinct
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s, in which each element is the least
prime factor A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
of one plus the product of all earlier elements. They are named after the ancient Greek mathematician
Euclid Euclid (; grc-gre, Wikt:Εὐκλείδης, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Euclid's Elements, Elements'' trea ...
, because their definition relies on an idea in Euclid's proof that there are infinitely many primes, and after Albert A. Mullin, who asked about the sequence in 1963. The first 51 elements of the sequence are :2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003, 30693651606209, 37, 1741, 1313797957, 887, 71, 7127, 109, 23, 97, 159227, 643679794963466223081509857, 103, 1079990819, 9539, 3143065813, 29, 3847, 89, 19, 577, 223, 139703, 457, 9649, 61, 4357, 87991098722552272708281251793312351581099392851768893748012603709343, 107, 127, 3313, 227432689108589532754984915075774848386671439568260420754414940780761245893, 59, 31, 211... These are the only known elements . Finding the next one requires finding the least prime factor of a 335-digit number (which is known to be
composite Composite or compositing may refer to: Materials * Composite material, a material that is made from several different substances ** Metal matrix composite, composed of metal and other parts ** Cermet, a composite of ceramic and metallic materials ...
).


Definition

The nth element of the sequence, a_n, is the least prime factor of :\Bigl(\prod_ a_i\Bigr)+1\,. The first element is therefore the least prime factor of the
empty product In mathematics, an empty product, or nullary product or vacuous product, is the result of multiplying no factors. It is by convention equal to the multiplicative identity (assuming there is an identity for the multiplication operation in question ...
plus one, which is 2. The third element is (2 × 3) + 1 = 7. A better illustration is the fifth element in the sequence, 13. This is calculated by (2 × 3 × 7 × 43) + 1 = 1806 + 1 = 1807, the product of two primes, 13 × 139. Of these two primes, 13 is the smallest and so included in the sequence. Similarly, the seventh element, 5, is the result of (2 × 3 × 7 × 43 × 13 × 53) + 1 = 1244335, the prime factors of which are 5 and 248867. These examples illustrate why the sequence can leap from very large to very small numbers.


Properties

The sequence is infinitely long and does not contain repeated elements. This can be proved using the method of Euclid's proof that there are infinitely many primes. That proof is
constructive Although the general English usage of the adjective constructive is "helping to develop or improve something; helpful to someone, instead of upsetting and negative," as in the phrase "constructive criticism," in legal writing ''constructive'' has ...
, and the sequence is the result of performing a version of that construction.


Conjecture

asked whether every prime number appears in the Euclid–Mullin sequence and, if not, whether the problem of testing a given prime for membership in the sequence is
computable Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is close ...
.
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 19 ...
d, on the basis of heuristic assumptions that the distribution of primes is random, that every prime does appear in the sequence. However, although similar recursive sequences over other domains do not contain all primes, these problems both remain open for the original Euclid–Mullin sequence. The least prime number not known to be an element of the sequence is 41. The positions of the prime numbers from 2 to 97 are: : 2:1, 3:2, 5:7, 7:3, 11:12, 13:5, 17:13, 19:36, 23:25, 29:33, 31:50, 37:18, 41:?, 43:4, 47:?, 53:6, 59:49, 61:42, 67:?, 71:22, 73:?, 79:?, 83:?, 89:35, 97:26 where ? indicates that the position (or whether it exists at all) is unknown as of 2012.


Related sequences

A related sequence of numbers determined by the largest prime factor of one plus the product of the previous numbers (rather than the smallest prime factor) is also known as the Euclid–Mullin sequence. It grows more quickly, but is not
monotonic In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
. The numbers in this sequence are :2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129, 1368845206580129, 889340324577880670089824574922371, … . Not every prime number appears in this sequence, and the sequence of missing primes, :5, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 61, 67, 71, 73, ... has been proven to be infinite. It is also possible to generate modified versions of the Euclid–Mullin sequence by using the same rule of choosing the smallest prime factor at each step, but beginning with a different prime than 2. Alternatively, taking each number to be one plus the product of the previous numbers (rather than factoring it) gives
Sylvester's sequence In number theory, Sylvester's sequence is an integer sequence in which each term of the sequence is the product of the previous terms, plus one. The first few terms of the sequence are :2, 3, 7, 43, 1807, 3263443, 10650056950807, 11342371305542184 ...
. The sequence constructed by repeatedly appending all factors of one plus the product of the previous numbers is the same as the sequence of prime factors of Sylvester's sequence. Like the Euclid–Mullin sequence, this is a non-monotonic sequence of primes, but it is known not to include all primes..


See also

*
Euclid number In mathematics, Euclid numbers are integers of the form , where ''p'n''# is the ''n''th primorial, i.e. the product of the first ''n'' prime numbers. They are named after the ancient Greek mathematician Euclid, in connection with Euclid's theor ...


References


External links

* {{DEFAULTSORT:Euclid-Mullin sequence Integer sequences Prime numbers Unsolved problems in number theory