HOME

TheInfoList



OR:

Erbium hexaboride (ErB6) is a rare-earth hexaboride compound containing the element
erbium Erbium is a chemical element with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element ...
, which has a
calcium hexaboride Calcium hexaboride (sometimes calcium boride) is a compound of calcium and boron with the chemical formula CaB6. It is an important material due to its high electrical conductivity, hardness, chemical stability, and melting point. It is a black, ...
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystal, crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pat ...
. It is one of the fundamental compounds formed in reactions between erbium and
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the ''boron group'' it has th ...
. The compound is isostructural with all other reported rare-earth hexaboride compounds including lanthanum hexaboride, samarium hexaboride, and cerium hexaboride. Due to the isostructural nature of the rare-earth hexaborides and the strong interaction of boron octahedra within the crystal, these compounds show a high degree of lattice matching which suggests the possibility of doping by substituting one rare earth metal within the crystal with another. Until recently, it had been hypothesized that erbium hexaboride was unstable due to the small size of the Er3+ cation within the crystal structure when compared to the ionic radii of other rare-earth elements that form known rare-earth hexaboride compounds. It has now been demonstrated, however, that new nanoscale synthetic methods are capable of producing high-purity, stable erbium hexaboride nanowires. These wires, produced using
chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (substra ...
(CVD), have a reported lattice constant of 4.1 Å.


References

Erbium compounds Borides {{Inorganic-compound-stub