Epochal Moment
   HOME

TheInfoList



OR:

In
astronomy Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
, an epoch or reference epoch is a
moment Moment or Moments may refer to: * Present time Music * The Moments, American R&B vocal group Albums * ''Moment'' (Dark Tranquillity album), 2020 * ''Moment'' (Speed album), 1998 * ''Moments'' (Darude album) * ''Moments'' (Christine Guldbrand ...
in time used as a reference point for some time-varying astronomical quantity. It is useful for the
celestial coordinates Astronomical coordinate systems are organized arrangements for specifying positions of satellites, planets, stars, galaxies, and other celestial objects relative to physical reference points available to a situated observer (e.g. the true hor ...
or
orbital elements Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same ...
of a
celestial body An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical object, physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''bod ...
, as they are subject to perturbations and vary with time. These time-varying astronomical quantities might include, for example, the
mean longitude Mean longitude is the ecliptic longitude at which an orbiting body could be found if its orbit were circular and free of perturbations. While nominally a simple longitude, in practice the mean longitude does not correspond to any one physical angle ...
or
mean anomaly In celestial mechanics, the mean anomaly is the fraction of an elliptical orbit's period that has elapsed since the orbiting body passed periapsis, expressed as an angle which can be used in calculating the position of that body in the classical ...
of a body, the node of its orbit relative to a
reference plane In celestial mechanics, the plane of reference (or reference plane) is the plane used to define orbital elements (positions). The two main orbital elements that are measured with respect to the plane of reference are the inclination and the longi ...
, the direction of the
apogee An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any ellip ...
or
aphelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any ellip ...
of its orbit, or the size of the
major axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the lo ...
of its orbit. The main use of astronomical quantities specified in this way is to calculate other relevant parameters of motion, in order to predict future positions and velocities. The applied tools of the disciplines of
celestial mechanics Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...
or its subfield
orbital mechanics Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of ...
(for predicting orbital paths and positions for bodies in motion under the gravitational effects of other bodies) can be used to generate an
ephemeris In astronomy and celestial navigation, an ephemeris (pl. ephemerides; ) is a book with tables that gives the trajectory of naturally occurring astronomical objects as well as artificial satellites in the sky, i.e., the position (and possibly vel ...
, a table of values giving the positions and velocities of astronomical objects in the sky at a given time or times. Astronomical quantities can be specified in any of several ways, for example, as a
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
function of the time-interval, with an epoch as a temporal point of origin (this is a common current way of using an epoch). Alternatively, the time-varying astronomical quantity can be expressed as a constant, equal to the measure that it had at the epoch, leaving its variation over time to be specified in some other way—for example, by a table, as was common during the 17th and 18th centuries. The word ''epoch'' was often used in a different way in older astronomical literature, e.g. during the 18th century, in connection with astronomical tables. At that time, it was customary to denote as "epochs", not the standard date and time of origin for time-varying astronomical quantities, but rather the values at that date and time ''of those time-varying quantities themselves''. In accordance with that alternative historical usage, an expression such as 'correcting the epochs' would refer to the adjustment, usually by a small amount, of the values of the tabulated astronomical quantities applicable to a fixed standard date and time of reference (and not, as might be expected from current usage, to a change from one date and time of reference to a different date and time).


Epoch versus equinox

Astronomical data are often specified not only in their relation to an epoch or date of reference but also in their relations to other conditions of reference, such as coordinate systems specified by "
equinox A solar equinox is a moment in time when the Sun crosses the Earth's equator, which is to say, appears directly above the equator, rather than north or south of the equator. On the day of the equinox, the Sun appears to rise "due east" and se ...
", or "equinox and
equator The equator is a circle of latitude, about in circumference, that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, halfway between the North and South poles. The term can als ...
", or "equinox and
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic again ...
" – when these are needed for fully specifying astronomical data of the considered type.


Date-references for coordinate systems

When the data are dependent for their values on a particular coordinate system, the date of that coordinate system needs to be specified directly or indirectly.
Celestial coordinate system Astronomical coordinate systems are organized arrangements for specifying positions of satellites, planets, stars, galaxies, and other celestial objects relative to physical reference points available to a situated observer (e.g. the true horizo ...
s most commonly used in astronomy are
equatorial coordinates The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fund ...
and
ecliptic coordinates The ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets (except Mercury) and many small Solar System bodi ...
. These are defined relative to the (moving)
vernal equinox Spring equinox or vernal equinox or variations may refer to: * March equinox, the spring equinox in the Northern Hemisphere * September equinox, the spring equinox in the Southern Hemisphere Other uses * Nowruz, Persian/Iranian new year which be ...
position, which itself is determined by the orientations of the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
's rotation axis and orbit around the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
. Their orientations vary (though slowly, e.g. due to
precession Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In othe ...
), and there is an
infinity Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions amo ...
of such coordinate systems possible. Thus the coordinate systems most used in astronomy need their own date-reference because the coordinate systems of that type are themselves in motion, e.g. by the
precession of the equinoxes In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In particu ...
, nowadays often resolved into precessional components, separate precessions of the equator and of the ecliptic. The epoch of the coordinate system need not be the same, and often in practice is not the same, as the epoch for the data themselves. The difference between reference to an epoch alone, and a reference to a certain
equinox A solar equinox is a moment in time when the Sun crosses the Earth's equator, which is to say, appears directly above the equator, rather than north or south of the equator. On the day of the equinox, the Sun appears to rise "due east" and se ...
with equator or ecliptic, is therefore that the reference to the epoch contributes to specifying the date of the values of astronomical variables themselves; while the reference to an equinox along with equator/ecliptic, of a certain date, addresses the identification of, or changes in, the coordinate system in terms of which those astronomical variables are expressed. (Sometimes the word 'equinox' may be used alone, e.g. where it is obvious from the context to users of the data in which form the considered astronomical variables are expressed, in equatorial form or ecliptic form.) The equinox with equator/ecliptic of a given date defines which coordinate system is used. Most standard coordinates in use today refer to 2000 TT (i.e. to 12h (noon) on the
Terrestrial Time Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses T ...
scale on January 1, 2000, see below), which occurred about 64 seconds sooner than noon
UT1 Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle with ...
on the same date (see ΔT). Before about 1984, coordinate systems dated to 1950 or 1900 were commonly used. There is a special meaning of the expression "equinox (and ecliptic/equator) of date". When coordinates are expressed as
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
s in time relative to a reference frame defined in this way, that means the values obtained for the coordinates in respect of any interval t after the stated epoch, are in terms of the coordinate system of the same date as the obtained values themselves, i.e. the date of the coordinate system is equal to (epoch + t). It can be seen that the date of the coordinate system need not be the same as the epoch of the astronomical quantities themselves. But in that case (apart from the "equinox of date" case described above), two dates will be associated with the data: one date is the epoch for the time-dependent expressions giving the values, and the other date is that of the coordinate system in which the values are expressed. For example,
orbital elements Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same ...
, especially
osculating elements In astronomy, and in particular in astrodynamics, the osculating orbit of an object in space at a given moment in time is the gravitational Kepler orbit (i.e. an elliptic or other conic one) that it would have around its central body if perturba ...
for minor planets, are routinely given with reference to two dates: first, relative to a recent epoch for all of the elements: but some of the data are dependent on a chosen coordinate system, and then it is usual to specify the coordinate system of a standard epoch which often is not the same as the epoch of the data. An example is as follows: For
minor planet According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor ...
(5145) Pholus, orbital elements have been given including the following data: Epoch 2010 Jan. 4.0 TT . . . = JDT 2455200.5
M 72.00071 . . . . . . . .(2000.0)
n. 0.01076162 .. . . . Peri . 354.75938
a 20.3181594 . . . . . Node . 119.42656
e. 0.5715321 . . . . . Incl .. 24.66109 where the epoch is expressed in terms of Terrestrial Time, with an equivalent Julian date. Four of the elements are independent of any particular coordinate system: M is mean anomaly (deg), n: mean daily motion (deg/d), a: size of semi-major axis (AU), e: eccentricity (dimensionless). But the argument of perihelion,
longitude of the ascending node The longitude of the ascending node (☊ or Ω) is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a specified reference direction, called the ''origin of longitude'', to the direction of the asce ...
and the inclination are all coordinate-dependent, and are specified relative to the reference frame of the equinox and ecliptic of another date "2000.0", otherwise known as J2000, i.e. January 1.5, 2000 (12h on January 1) or JD 2451545.0.


Epochs and periods of validity

In the particular set of coordinates exampled above, much of the elements has been omitted as unknown or undetermined; for example, the element n allows an approximate time-dependence of the element M to be calculated, but the other elements and n itself are treated as constant, which represents a temporary approximation (see
Osculating elements In astronomy, and in particular in astrodynamics, the osculating orbit of an object in space at a given moment in time is the gravitational Kepler orbit (i.e. an elliptic or other conic one) that it would have around its central body if perturba ...
). Thus a particular coordinate system (equinox and equator/ecliptic of a particular date, such as J2000.0) could be used forever, but a set of osculating elements for a particular epoch may only be (approximately) valid for a rather limited time, because osculating elements such as those exampled above do not show the effect of future perturbations which will change the values of the elements. Nevertheless, the period of validity is a different matter in principle and not the result of the use of an epoch to express the data. In other cases, e.g. the case of a complete analytical theory of the motion of some astronomical body, all of the elements will usually be given in the form of polynomials in interval of time from the epoch, and they will also be accompanied by trigonometrical terms of periodical perturbations specified appropriately. In that case, their period of validity may stretch over several centuries or even millennia on either side of the stated epoch. Some data and some epochs have a long period of use for other reasons. For example, the boundaries of the
IAU The International Astronomical Union (IAU; french: link=yes, Union astronomique internationale, UAI) is a nongovernmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreach ...
constellation A constellation is an area on the celestial sphere in which a group of visible stars forms Asterism (astronomy), a perceived pattern or outline, typically representing an animal, mythological subject, or inanimate object. The origins of the e ...
s are specified relative to an equinox from near the beginning of the year 1875. This is a matter of convention, but the convention is defined in terms of the equator and ecliptic as they were in 1875. To find out in which constellation a particular comet stands today, the current position of that comet must be expressed in the coordinate system of 1875 (equinox/equator of 1875). Thus that coordinate system can still be used today, even though most comet predictions made originally for 1875 (epoch = 1875) would no longer, because of the lack of information about their time-dependence and perturbations, be useful today.


Changing the standard equinox and epoch

To calculate the visibility of a celestial object for an observer at a specific time and place on the Earth, the coordinates of the object are needed relative to a coordinate system of current date. If coordinates relative to some other date are used, then that will cause errors in the results. The magnitude of those errors increases with the time difference between the date and time of observation and the date of the coordinate system used, because of the precession of the equinoxes. If the time difference is small, then fairly easy and small corrections for the precession may well suffice. If the time difference gets large, then fuller and more accurate corrections must be applied. For this reason, a star position read from a star atlas or catalog based on a sufficiently old equinox and equator cannot be used without corrections if reasonable accuracy is required. Additionally, stars move relative to each other through space. Apparent motion across the sky relative to other stars is called
proper motion Proper motion is the astrometric measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more dista ...
. Most stars have very small proper motions, but a few have proper motions that accumulate to noticeable distances after a few tens of years. So, some stellar positions read from a star atlas or catalog for a sufficiently old epoch require proper motion corrections as well, for reasonable accuracy. Due to precession and proper motion, star data become less useful as the age of the observations and their epoch, and the equinox and equator to which they are referred, get older. After a while, it is easier or better to switch to newer data, generally referred to a newer epoch and equinox/equator, than to keep applying corrections to the older data.


Specifying an epoch or equinox

Epochs and equinoxes are moments in time, so they can be specified in the same way as moments that indicate things other than epochs and equinoxes. The following standard ways of specifying epochs and equinoxes seem the most popular: *
Julian day The Julian day is the continuous count of days since the beginning of the Julian period, and is used primarily by astronomers, and in software for easily calculating elapsed days between two events (e.g. food production date and sell by date). ...
s, e.g., JD 2433282.4235 for January 0.9235, 1950 TT * Besselian years (see below), e.g., 1950.0 or B1950.0 for January 0.9235, 1950 TT * Julian years, e.g., J2000.0 for January 1.5, 2000 TT All three of these are expressed in TT =
Terrestrial Time Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses T ...
. Besselian years, used mostly for star positions, can be encountered in older catalogs but are now becoming obsolete. The
Hipparcos ''Hipparcos'' was a scientific satellite of the European Space Agency (ESA), launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial obj ...
catalog summary, for example, defines the "catalog epoch" as "J1991.25" (8.75 Julian years before January 1.5, 2000 TT, e.g., April 2.5625, 1991 TT).


Besselian years

A Besselian year is named after the German mathematician and astronomer
Friedrich Bessel Friedrich Wilhelm Bessel (; 22 July 1784 – 17 March 1846) was a German astronomer, mathematician, physicist, and geodesist. He was the first astronomer who determined reliable values for the distance from the sun to another star by the method ...
(1784–1846). defines the beginning of a Besselian year to be the moment at which the
mean longitude Mean longitude is the ecliptic longitude at which an orbiting body could be found if its orbit were circular and free of perturbations. While nominally a simple longitude, in practice the mean longitude does not correspond to any one physical angle ...
of the Sun, including the effect of aberration and measured from the mean equinox of the date, is exactly 280 degrees. This moment falls near the beginning of the corresponding
Gregorian year Gregorian may refer to: *The thought or ideology of Pope Gregory I or Pope Gregory VII (also called ''Gregorianism'') *Things named for Pope Gregory I: **Gregorian chant, the central tradition of Western plainchant, a form of monophonic, unaccompa ...
. The definition depended on a particular theory of the orbit of the Earth around the Sun, that of Newcomb (1895), which is now obsolete; for that reason among others, the use of Besselian years has also become or is becoming obsolete. says that a "Besselian epoch" can be calculated from the Julian date according to : B = 1900.0 + (Julian date − 2415020.31352) / 365.242198781 Lieske's definition is not exactly consistent with the earlier definition in terms of the mean longitude of the Sun. When using Besselian years, specify which definition is being used. To distinguish between calendar years and Besselian years, it became customary to add ".0" to the Besselian years. Since the switch to Julian years in the mid-1980s, it has become customary to prefix "B" to Besselian years. So, "1950" is the calendar year 1950, and "1950.0" = "B1950.0" is the beginning of Besselian year 1950. * The IAU constellation boundaries are defined in the equatorial coordinate system relative to the equinox of B1875.0. * The Henry Draper Catalog uses the equinox B1900.0. * The classical star atlas Tabulae Caelestes used B1925.0 as its equinox. According to Meeus, and also according to the formula given above, * B1900.0 = JDE 2415020.3135 = 1900 January 0.8135 TT * B1950.0 = JDE 2433282.4235 = 1950 January 0.9235 TT


Julian years and J2000

A Julian year is an interval with the length of a mean year in the
Julian calendar The Julian calendar, proposed by Roman consul Julius Caesar in 46 BC, was a reform of the Roman calendar. It took effect on , by edict. It was designed with the aid of Greek mathematicians and astronomers such as Sosigenes of Alexandr ...
, i.e. 365.25 days. This interval measure does not itself define any epoch: the
Gregorian calendar The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years dif ...
is in general use for dating. But, standard conventional epochs which are not Besselian epochs have been often designated nowadays with a prefix "J", and the calendar date to which they refer is widely known, although not always the same date in the year: thus "J2000" refers to the instant of 12 noon (midday) on January 1, 2000, and J1900 refers to the instant of 12 noon on
January 0 Several non-standard dates are used in calendars. Some are used sarcastically, some for scientific or mathematical purposes, and some for exceptional or fictional calendars. January 0 January 0 or 0 January is an alternative name for December 31 ...
, 1900, equal to December 31, 1899. It is also usual now to specify on what time scale the time of day is expressed in that epoch-designation, e.g. often
Terrestrial Time Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses T ...
. In addition, an epoch optionally prefixed by "J" and designated as a year with decimals (), where is either positive or negative and is quoted to 1 or 2 decimal places, has come to mean a date that is an interval of Julian years of 365.25 days away from the epoch J2000 = JD 2451545.0 (TT), still corresponding (in spite of the use of the prefix "J" or word "Julian") to the
Gregorian calendar The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years dif ...
date of January 1, 2000, at 12h TT (about 64 seconds before noon UTC on the same calendar day). (See also
Julian year (astronomy) In astronomy, a Julian year (symbol: a or aj) is a unit of measurement of time defined as exactly 365.25 days of SI seconds each.P. Kenneth Seidelmann, ed.''The explanatory supplement to the Astronomical Almanac'' (Mill Valley, Cal.: Univers ...
.) Like the Besselian epoch, an arbitrary Julian epoch is therefore related to the Julian date by : The IAU decided at their General Assembly of 1976 that the new standard equinox of J2000.0 should be used starting in 1984. Before that, the equinox of B1950.0 seems to have been the standard. Different astronomers or groups of astronomers used to define individually, but today standard epochs are generally defined by international agreement through the
IAU The International Astronomical Union (IAU; french: link=yes, Union astronomique internationale, UAI) is a nongovernmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreach ...
, so astronomers worldwide can collaborate more effectively. It is inefficient and error-prone if data or observations of one group have to be translated in non-standard ways so that other groups could compare the data with information from other sources. An example of how this works: if a star's position is measured by someone today, they then use a standard transformation to obtain the position expressed in terms of the standard reference frame of J2000, and it is often then this J2000 position which is shared with others. On the other hand, there has also been an astronomical tradition of retaining observations in just the form in which they were made, so that others can later correct the reductions to standard if that proves desirable, as has sometimes occurred. The currently-used standard epoch "J2000" is defined by international agreement to be equivalent to: # The
Gregorian date The Gregorian calendar is the calendar used in most parts of the world. It was introduced in October 1582 by Pope Gregory XIII as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years diffe ...
January 1, 2000, at 12:00 TT (
Terrestrial Time Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses T ...
). # The
Julian date The Julian day is the continuous count of days since the beginning of the Julian period, and is used primarily by astronomers, and in software for easily calculating elapsed days between two events (e.g. food production date and sell by date). ...
2451545.0 TT (
Terrestrial Time Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses T ...
). # January 1, 2000, 11:59:27.816 TAI (
International Atomic Time International Atomic Time (abbreviated TAI, from its French name ) is a high-precision atomic coordinate time standard based on the notional passage of proper time on Earth's geoid. TAI is a weighted average of the time kept by over 450 atomic ...
). # January 1, 2000, 11:58:55.816 UTC (
Coordinated Universal Time Coordinated Universal Time or UTC is the primary time standard by which the world regulates clocks and time. It is within about one second of mean solar time (such as UT1) at 0° longitude (at the IERS Reference Meridian as the currently used ...
).


Epoch of the day

Over shorter timescales, there are a variety of practices for defining when each day begins. In ordinary usage, the
civil day A day is the time period of a full rotation of the Earth with respect to the Sun. On average, this is 24 hours, 1440 minutes, or 86,400 seconds. In everyday life, the word "day" often refers to a solar day, which is the length between two solar ...
is reckoned by the
midnight Midnight is the transition time from one day to the next – the moment when the date changes, on the local official clock time for any particular jurisdiction. By clock time, midnight is the opposite of noon, differing from it by 12 hours. ...
epoch, that is, the civil day begins at midnight. But in older astronomical usage, it was usual, until January 1, 1925, to reckon by a
noon Noon (or midday) is 12 o'clock in the daytime. It is written as 12 noon, 12:00 m. (for meridiem, literally 12:00 noon), 12 p.m. (for post meridiem, literally "after noon"), 12 pm, or 12:00 (using a 24-hour clock) or 1200 (military time). Solar ...
epoch, 12 hours after the start of the civil day of the same denomination, so that the day began when the mean sun crossed the
meridian Meridian or a meridian line (from Latin ''meridies'' via Old French ''meridiane'', meaning “midday”) may refer to Science * Meridian (astronomy), imaginary circle in a plane perpendicular to the planes of the celestial equator and horizon * ...
at noon. This is still reflected in the definition of J2000, which started at noon, Terrestrial Time. In traditional cultures and in antiquity other epochs were used. In ancient Egypt, days were reckoned from sunrise to sunrise, following a morning epoch. This may be related to the fact that the Egyptians regulated their year by the
heliacal rising The heliacal rising ( ) or star rise of a star occurs annually, or the similar phenomenon of a planet, when it first becomes visible above the eastern horizon at dawn just before sunrise (thus becoming "the morning star") after a complete orbit of ...
of the star
Sirius Sirius is the list of brightest stars, brightest star in the night sky. Its name is derived from the Ancient Greek language, Greek word , or , meaning 'glowing' or 'scorching'. The star is designated α Canis Majoris, Latinisation ...
, a phenomenon which occurs in the morning just before dawn. In some cultures following a
lunar Lunar most commonly means "of or relating to the Moon". Lunar may also refer to: Arts and entertainment * ''Lunar'' (series), a series of video games * "Lunar" (song), by David Guetta * "Lunar", a song by Priestess from the 2009 album ''Prior t ...
or
lunisolar calendar A lunisolar calendar is a calendar in many cultures, combining lunar calendars and solar calendars. The date of Lunisolar calendars therefore indicates both the Moon phase and the time of the solar year, that is the position of the Sun in the Ea ...
, in which the beginning of the month is determined by the appearance of the New Moon in the evening, the beginning of the day was reckoned from sunset to sunset, following an evening epoch, e.g. the
Jewish Jews ( he, יְהוּדִים, , ) or Jewish people are an ethnoreligious group and nation originating from the Israelites Israelite origins and kingdom: "The first act in the long drama of Jewish history is the age of the Israelites""The ...
and
Islamic calendar The Hijri calendar ( ar, ٱلتَّقْوِيم ٱلْهِجْرِيّ, translit=al-taqwīm al-hijrī), also known in English as the Muslim calendar and Islamic calendar, is a lunar calendar consisting of 12 lunar months in a year of 354 or ...
s and in Medieval Western Europe in reckoning the dates of religious festivals,
Bede Bede ( ; ang, Bǣda , ; 672/326 May 735), also known as Saint Bede, The Venerable Bede, and Bede the Venerable ( la, Beda Venerabilis), was an English monk at the monastery of St Peter and its companion monastery of St Paul in the Kingdom o ...
, ''The Reckoning of Time'', 5, trans. Faith Wallis, (Liverpool: Liverpool University Press, 2004), pp. 22–24.
while in others a morning epoch was followed, e.g. the
Hindu Hindus (; ) are people who religiously adhere to Hinduism.Jeffery D. Long (2007), A Vision for Hinduism, IB Tauris, , pages 35–37 Historically, the term has also been used as a geographical, cultural, and later religious identifier for ...
and
Buddhist calendar The Buddhist calendar is a set of lunisolar calendars primarily used in Cambodia, Laos, Myanmar, India, Sri Lanka, and Thailand as well as in Malaysia, Singapore and Vietnam by Chinese populations for religious or official occasions. While the ...
s.


See also

*
Astrometry Astrometry is a branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. It provides the kinematics and physical origin of the Solar System and this galaxy, the Milky Way. His ...
*
Epoch (reference date) In chronology and periodization, an epoch or reference epoch is an instant in time chosen as the origin of a particular calendar era. The "epoch" serves as a reference point from which time is measured. The moment of epoch is usually decided by ...
* Ephemeris time *
International Celestial Reference System The International Celestial Reference System (ICRS) is the current standard celestial reference system adopted by the International Astronomical Union (IAU). Its origin is at the barycenter of the Solar System, with axes that are intended to "sho ...
*
International Celestial Reference Frame The International Celestial Reference System (ICRS) is the current standard celestial reference system adopted by the International Astronomical Union (IAU). Its origin is at the barycenter of the Solar System, with axes that are intended to "sho ...
*
Time in astronomy Theoretical astronomy is the use of analytical and computational models based on principles from physics and chemistry to describe and explain astronomical objects and astronomical phenomena. Theorists in astronomy endeavor to create theoretical ...


References


Notes


Citations


Sources

* * * * * * * *


Further reading

*


External links


What is Terrestrial Time?
– U.S. Naval Observatory

– U.S. Naval Observatory
IERS Conventions 2003 (defines ICRS and other related standards)
{{DEFAULTSORT:Epoch (Astronomy)