HOME

TheInfoList



OR:

Within the field of
molecular biology Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and phys ...
, the epitranscriptome includes all the biochemical modifications of the
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
(the
transcriptome The transcriptome is the set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells. The term can also sometimes be used to refer to all RNAs, or just mRNA, depending on the particular experiment. The ...
) within a
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
. In analogy to
epigenetics In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are " ...
that describes "functionally relevant changes to the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
that do not involve a change in the
nucleotide sequence A nucleic acid sequence is a succession of bases signified by a series of a set of five different letters that indicate the order of nucleotides forming alleles within a DNA (using GACT) or RNA (GACU) molecule. By convention, sequences are usua ...
", epitranscriptomics involves all functionally relevant changes to the
transcriptome The transcriptome is the set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells. The term can also sometimes be used to refer to all RNAs, or just mRNA, depending on the particular experiment. The ...
that do not involve a change in the
ribonucleotide In biochemistry, a ribonucleotide is a nucleotide containing ribose as its pentose component. It is considered a molecular precursor of nucleic acids. Nucleotides are the basic building blocks of DNA and RNA. Ribonucleotides themselves are basic m ...
sequence. Thus, the epitranscriptome can be defined as the ensemble of such functionally relevant changes. There are several types of RNA modifications that impact
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. ...
. These modifications happen to many types of cellular RNA including, but not limited to,
ribosomal RNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal ...
(rRNA),
transfer RNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino a ...
(tRNA), messenger RNA (mRNA), and
small nuclear RNA Small nuclear RNA (snRNA) is a class of small RNA molecules that are found within the splicing speckles and Cajal bodies of the cell nucleus in eukaryotic cells. The length of an average snRNA is approximately 150 nucleotides. They are transcr ...
(snRNA). The most common and well-understood mRNA modification at present is N6-Methyladenosine (m6A), which has been observed to occur an average of three times in every mRNA molecule. Currently, work is focused on determining the types of and location of RNA modifications, determining if these modification have function, and if so, what is their mechanism of action. Similar to the
epigenome An epigenome consists of a record of the chemical changes to the DNA and histone proteins of an organism; these changes can be passed down to an organism's offspring via transgenerational stranded epigenetic inheritance. Changes to the epigenome ...
, the epitranscriptome has "writers" and "erasers" that mark RNA and "readers" that translate those marks into function. One function that has been elucidated involves the
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecule ...
adenosine deaminase (ADAR), which acts on RNA. ADAR affects a series of cellular processes, including alternative splicing, microRNAs, the
innate immune system The innate, or nonspecific, immune system is one of the two main immunity strategies (the other being the adaptive immune system) in vertebrates. The innate immune system is an older evolutionary defense strategy, relatively speaking, and is th ...
, and leads to protein recoding especially for important receptors in the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
.


Chemical Modifications of RNA


N6-Methyladenosine (m6A)

m6A describes the
methylation In the chemical sciences, methylation denotes the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These t ...
of the
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seve ...
at position 6 in the
adenosine Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside buildin ...
base within mRNA. Discovered in 1974, m6A is the most abundant
eukaryotic Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bact ...
mRNA modification; most mRNAs contain approximately three m6A residues. However, some mRNA transcripts do not contain any m6A at all, while others may have 10 or more. The term "epitranscriptome" was coined following transcriptome-wide mappings of m6A sites, but does not necessarily exclude other post-transcriptional mRNA modifications. How, and in response to what stimulus, the cell endogeneously regulates the level of m6A methylation remains unclear at present. However, it is known that the levels of this epitranscriptional mark are dynamically altered during embryonic development. Moreover, environmental stimuli such as stress can also alter the levels of m6A. The m6A mRNA methylomes of different eukaryotic organisms have two common characteristics. First of all, the mark is usually found in the R > A6AC >A>C>or RRm6ACH sequence. Secondly, this mark is enriched in specific regions of the
transcriptome The transcriptome is the set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells. The term can also sometimes be used to refer to all RNAs, or just mRNA, depending on the particular experiment. The ...
; it is mostly found close to
stop codon In molecular biology (specifically protein biosynthesis), a stop codon (or termination codon) is a codon ( nucleotide triplet within messenger RNA) that signals the termination of the translation process of the current protein. Most codons in ...
s, in 3’-UTRs and in long internal
exon An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequenc ...
s. Nevertheless, m6A levels vary between different RNAs within a cell and between different cell types of the same organism. The mechanisms controlling the addition of m6A to some types of RNA have been described, but others remain unknown.


Writers, Readers, and Erasers

In eukaryotes, the use of m6A on mRNA involves a
methyltransferase Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Ros ...
complex, commonly termed the 'Writer', that installs the methyl group. This m6A modification is recognized by special proteins known as 'Readers'. The number of readers varies across different organisms. Notably, in vertebrates, the presence of proteins categorized as 'Erasers' is suggested to facilitate the removal of m6A, which enables a dynamic regulation of m6A deposition on mRNAs. The m6A mark is added by a m6A
methyltransferase Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Ros ...
writer complex post-transcriptionally. This writer complex is composed of
METTL3 N6-adenosine-methyltransferase 70 kDa subunit (METTL3) is an enzyme that in humans is encoded by the ''METTL3'' gene. This gene encodes the 70 kDa subunit of MT-A which is part of N6-adenosine-methyltransferase. This enzyme is involved in the pos ...
,
METTL14 Methyltransferase like 14 is a protein that in humans is encoded by the METTL14 gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ' ...
, Wilms tumor 1-associated protein (WTAP), KIAA1429 and
RBM15 Putative RNA-binding protein 15 is a protein that in humans is encoded by the ''RBM15'' gene. It is an RNA-binding protein RNA-binding proteins (often abbreviated as RBPs) are proteins that bind to the double or single stranded RNA in cells a ...
. METTL3 is the catalytic subunit, whereas METTL14 is involved in the stability of the complex and RNA recruitment. WTAP is also needed in aiding the recruitment of mRNA, whereas RBM15 and its paralog RBM15B are only involved in the recruitment of lncRNAs. The role RBM15 and RBM15B may have in recruiting other types of RNA to the methyltransferase complex remains unknown. The specific recognition sites of the writers are not known, but the minimal sequence required is 5’-Rm6AC-3’. METTL3 has been proposed to also be a "reader" of the m6A mark. This function is localized in the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
, where it promotes the recruitment of
eIF3 Eukaryotic initiation factor 3 (eIF3) is a multiprotein complex that functions during the initiation phase of eukaryotic translation. It is essential for most forms of cap-dependent and cap-independent translation initiation. In humans, eIF3 con ...
. Discovery of the METTL3 complex indicated that m6A installation might be a regulated process, which was pivotal for the advancement and interest in the field of epitranscriptomics. Members of the
YTH domain In molecular biology, the protein domain YTH refers to a member of the YTH family that has been shown to selectively remove transcripts of meiosis-specific genes expressed in mitotic cells. They also play a role in the epitranscriptome as reader ...
protein family act as "readers" of m6A. The study of these proteins has been key in understanding the functions and effects of mRNA methylation. It has been shown that three members of the human YTH domain family of proteins have higher binding affinities to methylated mRNA. The YTH protein
YTHDF2 YTH N6-methyladenosine RNA binding protein 2 is a protein that in humans is encoded by the YTHDF2 gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ...
affects mRNA by directing methylated mRNA from the translational pool to mRNA decay sites. As a result, presence of m6A on mRNA is correlated with a shorter
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
than unmethylated mRNA. So far, two "erasers" of the m6A mark have been identified. ALKBH5 is a demethylase found in mammals that removes the methyl group of m6A. The second one is the fat mass and obesity associated protein ( FTO), a demethylase that converts m6A back to
adenosine Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside buildin ...
. FTO preferentially demethylates the m6A found closer to the mRNA cap. This oxidative process has three steps and two intermediates: N6-hydroxymethyladenosine (hm6A) and N6-formyladenosine (f6A). FTO is most commonly found in nuclear speckles; however, in some species low levels of FTO can also be found in the cytoplasm. Dysfunctional FTO correlates with alterations in body weight and disease, while Alkbh5 knockout mice have impaired fertility. These two facts reflect how important the proper regulation of the m6A modification is for normal body function. Moreover, mutations in FTO can lead to developmental failures, brain atrophy and physiological disorders in adulthood.


Role in the life-cycle of mRNA

mRNA methylation is important throughout the entire life-cycle of the mRNA, starting with the alternative
polyadenylation Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. In eu ...
(APA) of some transcripts. m6A sites are often located in the last
exon An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequenc ...
, mostly in the 3’ untranslated region (3'-UTR). The presence of m6A in the 3’-UTR promotes the use of the proximal APA site, resulting in a shorter 3’-UTR. Splicing of the pre-mRNA transcripts may be influenced by m6A, although this effect can vary across different biological systems. Furthermore, nuclear export of mature mRNAs depends on m6A; when the m6A "writers" are inhibited, there is a delay in the export of the mature mRNAs. However, normal nuclear export does not solely depend on m6A, other mRNA marks such as 5'-methylcytosine (m5C) are also involved. The m6A mark has a notable effect on translational dynamics. There are various ways in which m6A is involved in translational efficiency. For instance, this modification modulates multiple steps in the process of tRNA incorporation. On the one hand, it slows down GTP hydrolysis by
EF-Tu EF-Tu (elongation factor thermo unstable) is a prokaryotic elongation factor responsible for catalyzing the binding of an aminoacyl-tRNA (aa-tRNA) to the ribosome. It is a G-protein, and facilitates the selection and binding of an aa-tRNA to ...
by 12-fold and the
peptidyl transfer The peptidyl transferase is an aminoacyltransferase () as well as the primary enzymatic function of the ribosome, which forms peptide bonds between adjacent amino acids using tRNAs during the translation process of protein biosynthesis. The su ...
reaction by two-fold. It also causes a 1.5-fold increase in the amount of GTP hydrolyzed per peptidyl transfer, which indicates that a lot of proofreading is required. Moreover, because it is just a modified adenosine base, m6A base-pairs with
uridine Uridine (symbol U or Urd) is a glycosylated pyrimidine analog containing uracil attached to a ribose ring (or more specifically, a ribofuranose) via a β-N1-glycosidic bond. The analog is one of the five standard nucleosides which make up nucl ...
during decoding. However, the adenosine's methylation hinders tRNA accommodation and translation elongation. When a m6A-modified
codon The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
interacts with its cognate tRNA (the tRNA with the anticodon that is complementary to a particular codon), it acts more like a near-cognate codon interaction instead of the cognate codon interaction. This can be seen in the delay in the tRNA accommodation, which is dependent upon both the position of the m6A in the mRNA codons and on how accurate the translation is. Overall, this m6A modification leads to a kinetic loss of a factor of 18. To summarize, translation-elongation dynamics are slower for codons with m6A and different locations of these modified nucleotides in the mRNA codons affect decoding dynamics in different ways. However, this mark can also increase translational efficiency. The m6A "reader" YTHDF1 induces the association of the modified mRNA with the ribosome. Furthermore, it also recruits the translation initiation factor eIF3 to the mRNA independently of METTL3. Additionally, eIF3 also acts as a "reader" of a m6A located in the 5’-UTR of the mRNA, which results in recruitment of the
40S The eukaryotic small ribosomal subunit (40S) is the smaller subunit of the eukaryotic 80S ribosomes, with the other major component being the large ribosomal subunit (60S). The "40S" and "60S" names originate from the convention that ribosomal pa ...
translational preinitiation complex. This interaction is involved in cap-independent translation, which happens during the cellular response to
heat shock The heat shock response (HSR) is a cell stress response that increases the number of molecular chaperones to combat the negative effects on proteins caused by stressors such as increased temperatures, oxidative stress, and heavy metals. In a norm ...
stress. m6A methylation also modulates mRNA stability. The "reader" YTHDF2 binds to m6A-containing mRNAs and decreases their stability by recruiting them to
P-bodies P-bodies, or processing bodies are distinct foci formed by phase separation within the cytoplasm of the eukaryotic cell consisting of many enzymes involved in mRNA turnover. P-bodies are highly conserved structures and have been observed in s ...
, in a process called methylation-dependent mRNA decay. This process is needed to rapidly degrade
pluripotency Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
transcription factor transcripts, to enable the commitment of a pluripotent stem cell to a specific cell lineage. Reduced levels of m6A in mice embryos lead to embryonic lethality during the early stages of development.


Role of N6-Methyladenosine (m6A) in alternative splicing

Stem loop Stem-loop intramolecular base pairing is a pattern that can occur in single-stranded RNA. The structure is also known as a hairpin or hairpin loop. It occurs when two regions of the same strand, usually complementary in nucleotide sequence whe ...
structures can sometimes be found in
intron An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene ...
s. m6A residues located in these stem-loops weaken base-pairing interactions within the stem, thus altering the structure of the mRNA. This phenomenon is known as m6A-Switch. The m6A mark has an important role in alternative splicing, since it increases the accessibility of
hnRNPC Heterogeneous nuclear ribonucleoproteins C1/C2 is a protein that in humans is encoded by the ''HNRNPC'' gene. It is abnormally expressed in fetuses of both IVF and ICSI, which may contribute to the increase risk of birth defects in these ART. Fu ...
to its binding site. The heterogeneous nuclear ribonucleoprotein C (hnRNPC) is a RNA-binding protein that complexes with both
heterogeneous nuclear RNA A primary transcript is the single-stranded ribonucleic acid (RNA) product synthesized by transcription of DNA, and processed to yield various mature RNA products such as mRNAs, tRNAs, and rRNAs. The primary transcripts designated to be mRNAs a ...
(hnRNA) and
pre-mRNA A primary transcript is the single-stranded ribonucleic acid (RNA) product synthesized by transcription of DNA, and processed to yield various mature RNA products such as mRNAs, tRNAs, and rRNAs. The primary transcripts designated to be mRNAs ...
to participate in
pre-mRNA processing Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, fu ...
. hnRNPC binds to a uridine-rich region in introns that can usually form stem-loops. The destabilization of the stem-loop exposes the hnRNPC binding site, which increases the accessibility of the protein to the region. Because hnRNPC must be bound to pre-mRNA in order to fulfill its function, increased accessibility means higher activity of hnRNPC. Therefore, m6A residues located in stem-loops of introns enhance the activity of hnRNPC, which results in increased alternative splicing. Evidence supporting this claim identified that decreased m6A levels in the transcriptome lead to significantly reduced hnRNPC binding. m6A also has additional roles in alternative splicing by acting as the binding site for YTHDC1 (YTHDC1 binds to m6A residues located in alternative exons). YTHDC1 has a double role in alternative splicing. First of all, it recruits the serine and arginine-rich splicing factor 3 (SRSF3), which promotes exon inclusion. In addition, YTHDC1 blocks binding of SRSF10, a protein involved in
exon-skipping In molecular biology, exon skipping is a form of RNA splicing used to cause cells to “skip” over faulty or misaligned sections (exons) of genetic code, leading to a truncated but still functional protein despite the genetic mutation. Mechani ...
. Due to the role of m6A in alternative splicing, pre-mRNAs have higher levels of m6A than mature mRNAs. Moreover, m6A is more abundant in mRNAs that undergo alternative splicing compared to genes that code a single
isoform A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene or gene family and are the result of genetic differences. While many perform the same or similar biological roles, some iso ...
. This is because alternatively spliced mRNAs are enriched in METTL3 binding sites. Splicing is affected in Mettl3
knock-out mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or " knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
, resulting in increased frequency of exon skipping and intron retention. However, m6A is not a general unspecific splicing factor, it only participates in the alternative splicing of certain mRNAs and lncRNAs.


Other roles of m6A

m6A is not only found on mRNAs, various non-coding RNAs also contain this mark. For instance, XIST, the lncRNA that initiates
X-inactivation X-inactivation (also called Lyonization, after English geneticist Mary Lyon) is a process by which one of the copies of the X chromosome is inactivated in therian female mammals. The inactive X chromosome is silenced by being packaged into ...
, is enriched in m6A. These m6A are recognized and bound by the YTH domain protein YTHDC1. XIST mediated silencing of the X chromosome is negatively affected when XIST is not modified with m6A. RNA molecules containing m6A are involved in UV-induced DNA damage repair mechanisms. When DNA is damaged, poly(A)+ transcripts containing numerous m6A residues accumulate in the region. This facilitates the accessibility of DNA-repairing proteins, such as DNA polymerase K, so that they can fulfil their function.


Disease

Alterations in the pathways leading to the addition of the removal of the m6A mark result in impaired gene expression and cellular function, which can lead to disease. Normal m6A levels are altered in a number of
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal bl ...
s. Reduced m6A levels due to down regulation of METTL3 and/or METTL14 lead to the activation of a number of
oncogene An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.
s, such as the gene encoding ADAM metallopeptidase domain 19 (ADAM19). Moreover, loss of m6A also results in the down regulation of tumor suppressors like cyclin-dependent kinase inhibitor 2A (CDKN2A) and breast cancer 2 (BRCA2). On the other hand, increased m6A levels inhibit
tumor progression Tumor progression is the third and last phase in tumor development. This phase is characterised by increased growth speed and invasiveness of the tumor cells. As a result of the progression, phenotypical changes occur and the tumor becomes more agg ...
in certain types of cancer. In addition,
single nucleotide polymorphisms In genetics, a single-nucleotide polymorphism (SNP ; plural SNPs ) is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in a sufficiently larg ...
(SNPs) on the gene encoding FTO have been associated with increased risk of
breast The breast is one of two prominences located on the upper ventral region of a primate's torso. Both females and males develop breasts from the same embryological tissues. In females, it serves as the mammary gland, which produces and s ...
and
pancreatic cancer Pancreatic cancer arises when cells in the pancreas, a glandular organ behind the stomach, begin to multiply out of control and form a mass. These cancerous cells have the ability to invade other parts of the body. A number of types of panc ...
. Altered m6A levels also contribute to hypoxia-induced enrichment of breast cancer stem cells phenotype. All things considered, "writers" and "erasers" of the m6A mark may be good potential drug targets in
cancer therapy Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal ble ...
. Metabolic disorders are also affected by the m6A mark due to the role of FTO. Overexpression of FTO results in increased body and
fat mass Adipose tissue, body fat, or simply fat is a loose connective tissue composed mostly of adipocytes. In addition to adipocytes, adipose tissue contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular en ...
, whereas loss of FTO leads to a reduction in
lean body mass Lean body mass (LBM), sometimes conflated with ''fat-free mass'', is a component of body composition. Fat free mass (FFM) is calculated by subtracting body fat weight from total body weight: total body weight is lean plus fat. In equations: :LBM&n ...
. However, the mechanisms by which changes in FTO expression affect body and fat mass are not understood. Current research of the m6a epitranscriptome is continuing to uncover the implications of m6a and its post-physiological effects on ischemic stroke incidents. Microglial-mediated responses and contributing demethylases, including FTO and ALKBH5, appear to be a contributing factor for alterations of the cerebral m6a epitranscriptome. Mood disorders, such as major depressive disorder, have also been identified as disease processes associated with m6a epitranscriptome changes.


N1-methyladenosine (m1A)

N1-methyladenosine is a modified nucleoside in which a methyl group is added to N1 of the