Ephaptic coupling is a form of communication within the
nervous system
In Biology, biology, the nervous system is the Complex system, highly complex part of an animal that coordinates its Behavior, actions and Sense, sensory information by transmitting action potential, signals to and from different parts of its ...
and is distinct from direct communication systems like
electrical synapse
Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as descri ...
s and
chemical synapse
Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous syste ...
s. It may refer to the coupling of adjacent (touching) nerve fibers caused by the exchange of ions between the cells, or it may refer to coupling of nerve fibers as a result of local electric fields.
[Aur D., Jog, MS. (2010) ''Neuroelectrodynamics: Understanding the brain language'', IOS Press, ] In either case ephaptic coupling can influence the synchronization and timing of
action potential
An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, ...
firing in neurons.
Myelination
Myelin is a lipid-rich material that surrounds nerve cell axons (the nervous system's "wires") to insulate them and increase the rate at which electrical impulses (called action potentials) are passed along the axon. The myelinated axon can be l ...
is thought to inhibit ephaptic interactions.
History and etymology
The idea that the electrical activity generated by nervous tissue may influence the activity of surrounding nervous tissue is one that dates back to the late 19th century. Early experiments, like those by du Bois-Reymond,
demonstrated that the firing of a primary nerve may induce the firing of an adjacent secondary nerve (termed "secondary excitation"). This effect was not quantitatively explored, however, until experiments by Katz and Schmitt
in 1940, when the two explored the electric interaction of two adjacent limb nerves of the crab ''
Carcinus maenas
''Carcinus maenas'' is a common littoral crab. It is known by different names around the world. In the British Isles, it is generally referred to as the shore crab, or green shore crab. In North America and South Africa, it bears the name eur ...
''. Their work demonstrated that the progression of the
action potential
An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, ...
in the active axon caused excitability changes in the inactive axon. These changes were attributed to the
local currents that form the action potential. For example, the currents that caused the depolarization (excitation) of the active nerve caused a corresponding hyperpolarization (depression) of the adjacent resting fiber. Similarly, the currents that caused repolarization of the active nerve caused slight depolarization in the resting fiber. Katz and Schmitt also observed that stimulation of both nerves could cause interference effects. Simultaneous action potential firing caused interference and resulted in decreased
conduction velocity
In neuroscience, nerve conduction velocity (CV) is an important aspect of nerve conduction studies. It is the speed at which an electrochemical impulse propagates down a neural pathway. Conduction velocities are affected by a wide array of facto ...
, while slightly offset stimulation resulted in synchronization of the two impulses.
In 1941
Angélique Arvanitaki explored the same topic and proposed the usage of the term "ephapse" (from the Greek and meaning "to touch") to describe this phenomenon and distinguish it from synaptic transmission. Over time the term ephaptic coupling has come to be used not only in cases of electric interaction between adjacent elements, but also more generally to describe the effects induced by any field changes along the cell membrane.
Mechanism and effects
Role in excitation and inhibition
The early work performed by Katz and Schmitt demonstrated that ephaptic coupling between the two adjacent nerves was insufficient to stimulate an action potential in the resting nerve. Under ideal conditions the maximum depolarization observed was approximately 20% of the
threshold stimulus.
However, conditions can be manipulated in such a way that the action potential from one neuron can be spread to a neighboring neuron. This was accomplished in one study in two experimental conditions: increased calcium concentrations, which lowered the threshold potential, or by submerging the axons in mineral oil, which increased resistance. While these manipulations do not reflect normal conditions, they do highlight the mechanisms behind ephaptic excitation.
Ephaptic coupling has also been found to play an important role in inhibition of neighboring neurons. Depending on the location and identity of the neurons, various mechanisms have been found to underlie ephaptic inhibition. In one study, newly excited neighboring neurons interfered with already sustained currents, thus lowering the extracellular potential and depolarizing the neuron in relation to its surrounding environment, effectively inhibiting the action potential's propagation.
Role in synchronization and timing
Studies of ephaptic coupling have also focused on its role in the synchronization and timing of action potentials in neurons. In the simpler case of adjacent fibers that experience simultaneous stimulation the impulse is slowed because both fibers are limited to exchange ions solely with the interstitial fluid (increasing the resistance of the nerve). Slightly offset impulses (conduction velocities differing by less than 10%) are able to exchange ions constructively and the action potentials propagate slightly out of phase at the same velocity.
More recent research, however, has focused on the more general case of electric fields that affect a variety of neurons. It has been observed that
local field potential
Local field potentials (LFP) are transient electrical signals generated in nervous and other tissues by the summed and synchronous electrical activity of the individual cells (e.g. neurons) in that tissue. LFP are "extracellular" signals, meaning ...
s in cortical neurons can serve to synchronize neuronal activity.
direct link to full text
Although the mechanism is unknown, it is hypothesized that neurons are ephaptically coupled to the frequencies of the local field potential. This coupling may effectively synchronize neurons into periods of enhanced excitability (or depression) and allow for specific patterns of action potential timing (often referred to as spike timing). This effect has been demonstrated and modeled in a variety of cases.
A hypothesis or explanation behind the mechanism is "one-way", "master-slave", or "unidirectional synchronization" effect as mathematical and fundamental property of non-linear dynamic systems (oscillators like neurons) to synchronize under certain criteria. Such phenomenon was proposed and predicted to be possible between two HR neurons, since 2010 in simulations and modeling work by Hrg.
It was also shown that such unidirectional synchronization or copy/paste transfer of neural dynamics from master to slave neurons, could be exhibited in different ways. Hence the phenomenon is of not only fundamental interest but also applied one from treating epilepsy to novel learning systems. Synchronization of neurons is in principle unwanted behavior, as brain would have zero information or be simply a bulb if all neurons would synchronize. Hence it is a hypothesis that neurobiology and evolution of brain coped with ways of preventing such synchronous behavior on large scale, using it rather in other special cases.
Examples
Cardiac tissue
The
electrical conduction system of the heart
The cardiac conduction system (CCS) (also called the electrical conduction system of the heart) transmits the signals generated by the sinoatrial node – the heart's pacemaker, to cause the heart muscle to contract, and pump blood through the ...
has been robustly established. However, newer research has been challenging some of the previously accepted models. The role of ephaptic coupling in cardiac cells is becoming more apparent. One author even goes so far as to say, “While previously viewed as a possible alternative to electrotonic coupling, ephaptic coupling has since come to be viewed as operating in tandem with gap junctions, helping sustain conduction when gap junctional coupling is compromised.”
Ephaptic interactions among cardiac cells help fill in the gaps that electrical synapses alone cannot account for. There are also a number of mathematical models that more recently incorporate ephaptic coupling into predictions about electrical conductance in the heart.
Experimental work suggests that sodium channel rich nanodomains located at sites of close contact between cardiac myocytes may constitute functional units of ephaptic coupling and selective disruption of these nanodomains resulted in arrhythmogenic conduction slowing, suggesting an important role for ephaptic coupling in the heart.
Epilepsy and seizures
Epileptic seizure
An epileptic seizure, informally known as a seizure, is a period of symptoms due to abnormally excessive or neural oscillation, synchronous neuronal activity in the brain. Outward effects vary from uncontrolled shaking movements involving much o ...
s occur when there is synchrony of electrical waves in the brain. Knowing the role that ephaptic coupling plays in maintaining synchrony in electrical signals, it makes sense to look for ephaptic mechanisms in this type of pathology. One study suggested that cortical cells represent an ideal place to observe ephaptic coupling due to the tight packing of axons, which allows for interactions between their electrical fields. They tested the effects of changing extracellular space (which affects local electrical fields) and found that one can block epileptic synchronization independent of chemical synapse manipulation simply by increasing the space between cells.
Later, a model was created to predict this phenomenon and showed scenarios with greater extracellular spacing that effectively blocked epileptic synchronization in the brain.
Olfactory system in the brain
Neurons in the olfactory system are unmyelinated and densely packed and thus the often small effects of ephaptic coupling are more easily seen. A number of studies have shown how inhibition among neurons in the olfactory system work to fine tune integration of signals in response to odor. This inhibition has been shown to occur from changes in electrical potentials alone.
The addition of ephaptic coupling to olfactory neuron models adds further support to the "dedicated-line" model in which each olfactory receptor sends its signal to one neuron. The inhibition due to ephaptic coupling would help account for the integration of signals that gives rise to more nuanced perception of smells.
Synapses
Synapses are typically formed where two neurons come in very close proximity. Ephaptic coupling may therefore arise across the
synaptic cleft
Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous syste ...
. Prominent examples are the fish
Mauthner cell The Mauthner cells are a pair of big and easily identifiable neurons (one for each half of the body) located in the rhombomere 4 of the hindbrain in fish and amphibians that are responsible for a very fast escape reflex (in the majority of animal ...
, the
chick ciliary ganglion, the mammalian cerebellar basket synapse,
and the mammalian, developing
calyx of Held
The Calyx of Held is a particularly large synapse in the mammalian auditory central nervous system, so named after Hans Held who first described it in his 1893 article ''Die centrale Gehörleitung''Held, H. "Die centrale Gehörleitung" Arch. Ana ...
synapse.
Mathematical models
Due to the very small electrical fields produced by neurons, mathematical models are often used in order to test a number of manipulations.
Cable theory
Classical cable theory uses mathematical models to calculate the electric current (and accompanying voltage) along passive neurites, particularly the dendrites that receive synaptic inputs at different sites and times. Estimates are made by mode ...
is one of the most important mathematical equations in neuroscience.
It calculates electrical current using capacitance and resistance as variables and has been the main basis for many predictions about ephaptic coupling in neurons. However, many authors have worked to create more refined models in order to more accurately represent the environments of the nervous system. For example, many authors have proposed models for cardiac tissue that includes additional variables that account for the unique structure and geometry of cardiac cells
varying scales of size,
or three-dimensional electrodiffusion.
Animal models
Squid giant axons
In 1978, basic tests were being conducted on squid giant axons in order to find evidence of ephaptic events. It was shown that an action potential of one axon could be propagated to a neighboring axon. The level of transmission varied, from subthreshold changes to initiation of an action potential in a neighboring cell, but in all cases, it was apparent that there are implications of ephaptic coupling that are of physiological importance.
Rat spinal cord and medulla
One study tested the effects of ephaptic coupling by using both neurotransmitter antagonists to block chemical synapses and gap junction blockers to block electrical synapses. It was found that rhythmic electrical discharge associated with fetal neurons in the rat spinal cord and medulla was still sustained. This suggests that connections between the neurons still exist and work to spread signals even without traditional synapses. These findings support a model in which ephaptic coupling works alongside canonical synapses to propagate signals across neuronal networks.
Rat Purkinje cells of the cerebellum
One of the few known cases of a functional system in which ephaptic coupling is responsible for an observable physiological event is in the
Purkinje cell
Purkinje cells, or Purkinje neurons, are a class of GABAergic inhibitory neurons located in the cerebellum. They are named after their discoverer, Czech anatomist Jan Evangelista Purkyně, who characterized the cells in 1839.
Structure
The ...
s of the rat cerebellum.
It was demonstrated in this study that the
basket cell
Basket cells are inhibitory GABAergic interneurons of the brain, found throughout different regions of the cortex and cerebellum.
Anatomy and physiology
Basket cells are multipolar GABAergic interneurons that function to make inhibitory synapses ...
s which encapsulate some regions of Purkinje fibers can cause inhibitory effects on the Purkinje cells. The firing of these basket cells, which occurs more rapidly than in the Purkinje cells, draws current across the Purkinje cell and generates a passive hyperpolarizing potential which inhibits the activity of the Purkinje cell. Although the exact functional role of this inhibition is still unclear, it may well have a synchronizing effect in the Purkinje cells as the ephaptic effect will limit the firing time.
A similar ephaptic effect has been studied in the
Mauthner cell The Mauthner cells are a pair of big and easily identifiable neurons (one for each half of the body) located in the rhombomere 4 of the hindbrain in fish and amphibians that are responsible for a very fast escape reflex (in the majority of animal ...
s of
teleosts
Teleostei (; Greek ''teleios'' "complete" + ''osteon'' "bone"), members of which are known as teleosts ), is, by far, the largest infraclass in the class Actinopterygii, the ray-finned fishes, containing 96% of all extant species of fish. Teleo ...
.
Skepticism
While the idea of non-synaptic interactions between neurons has existed since the 19th century, there has historically been a lot of skepticism in the field of neuroscience. Many people believed that the micro electrical fields produced by the neurons themselves were so small that they were negligible.
While many supporters of the ephaptic coupling theory have been trying to prove its existence through experiments that block both chemical and electrical synapses, still some opponents in the field express caution. For example, in 2014, one scientist published a review that presents his skepticism on the idea of ephaptic coupling, saying “The agreement between their simulations and Poelzing’s data is impressive, but I will need a more definitive experimental confirmation before I can embrace the ephaptic hypothesis.”
He bases his caution in wanting more distinction between gap junctions' propagation of charge and true ephaptic coupling. Whether it is a true lack of evidence or simply obstinance in the face of change, many in the field are still not entirely convinced there is unambiguous evidence of ephaptic coupling. Research continues and in 2018, surprising results were announced
See also
*
Saltatory conduction
In neuroscience, saltatory conduction () is the propagation of action potentials along myelinated axons from one node of Ranvier to the next node, increasing the conduction velocity of action potentials. The uninsulated nodes of Ranvier are th ...
*
Electroencephalography
Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocor ...
*
Spike-field coherence
*
NeuroElectroDynamics
*
Cable theory
Classical cable theory uses mathematical models to calculate the electric current (and accompanying voltage) along passive neurites, particularly the dendrites that receive synaptic inputs at different sites and times. Estimates are made by mode ...
*
Local field potential
Local field potentials (LFP) are transient electrical signals generated in nervous and other tissues by the summed and synchronous electrical activity of the individual cells (e.g. neurons) in that tissue. LFP are "extracellular" signals, meaning ...
References
{{DEFAULTSORT:Ephaptic Coupling
Neurophysiology
Cellular neuroscience
Signal transduction