Endoplasm
   HOME

TheInfoList



OR:

Endoplasm generally refers to the inner (often granulated), dense part of a cell's
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
. This is opposed to the ectoplasm which is the outer (non-granulated) layer of the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
, which is typically watery and immediately adjacent to the plasma membrane. The nucleus is separated from the endoplasm by the nuclear envelope. The different makeups/viscosities of the endoplasm and ectoplasm contribute to the amoeba's locomotion through the formation of a pseudopod. However, other types of cells have cytoplasm divided into endo- and ectoplasm. The endoplasm, along with its granules, contains water, nucleic acids, amino acids, carbohydrates, inorganic ions, lipids, enzymes, and other molecular compounds. It is the site of most cellular processes as it houses the organelles that make up the
endomembrane system The endomembrane system is composed of the different membranes (endomembranes) that are suspended in the cytoplasm within a eukaryotic cell. These membranes divide the cell into functional and structural compartments, or organelles. In eukaryotes ...
, as well as those that stand alone. The endoplasm is necessary for most metabolic activities, including
cell division Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there ar ...
. The endoplasm, like the cytoplasm, is far from static. It is in a constant state of flux through
intracellular transport Intracellular transport is the movement of vesicles and substances within a cell. Intracellular transport is required for maintaining homeostasis within the cell by responding to physiological signals. Proteins synthesized in the cytosol are dis ...
, as vesicles are shuttled between organelles and to/from the plasma membrane. Materials are regularly both degraded and synthesized within the endoplasm based on the needs of the cell and/or organism. Some components of the cytoskeleton run throughout the endoplasm though most are concentrated in the ectoplasm - towards the cells edges, closer to the plasma membrane. The endoplasm's granules are suspended in cytosol.


Granules

The term granule refers to a small particle within the endoplasm, typically the
secretory vesicles 440px Secretion is the movement of material from one point to another, such as a secreted chemical substance from a cell or gland. In contrast, excretion is the removal of certain substances or waste products from a cell or organism. The classical ...
. The granule is the defining characteristic of the endoplasm, as they are typically not present within the ectoplasm. These offshoots of the endomembrane system are enclosed by a phospholipid bilayer and can fuse with other organelles as well as the plasma membrane. Their membrane is only semipermeable and allows them to house substances that could be harmful to the cell if they were allowed to flow freely within the cytosol. These granules give the cell a large amount of regulation and control over the wide variety of metabolic activities that take place within the endoplasm. There are many different types, characterized by the substance that the vesicle contains. These granules/vesicles can contain enzymes, neurotransmitters, hormones, and waste. Typically the contents are destined for another cell/tissue. These vesicles act as a form of storage and release their contents when needed, often prompted by a signaling pathway. Once signaled to move, the vesicles can travel along aspects of the cytoskeleton via motor proteins to reach their final destination.


Cytosol component of endoplasm

The
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
makes up the semifluid portion of the endoplasm, in which materials are suspended. It is a concentrated aqueous gel with molecules so crowded and packed together within the water base that its behavior is more gel-like than liquid. It is water based but contains both small and large molecules, giving it density. It has several functions, including physical support of the cell, preventing collapse, as well as degrading nutrients, transport of small molecules, and containing the ribosomes responsible for protein synthesis. Cytosol contains predominantly water, but also has a complex mixture of large hydrophilic molecules, smaller molecules and proteins, and dissolved ions. The contents of the cytosol change based on the needs of the cell. Not to be confused with the cytoplasm, the cytosol is only the gel matrix of the cell which does not include many of the macromolecules essential to cellular function.


Locomotion of amoeba via endoplasmic changes

Though amoeba locomotion is assisted by appendages like flagella and cilia, the main source of movement in these cells is pseudopodial locomotion. This process takes advantage of the different consistencies of the endoplasm and ectoplasm to create a pseudopod.
Pseudopod A pseudopod or pseudopodium (plural: pseudopods or pseudopodia) is a temporary arm-like projection of a eukaryotic cell membrane that is emerged in the direction of movement. Filled with cytoplasm, pseudopodia primarily consist of actin filament ...
, or “false foot” is the term for the extension of a cell's plasma membrane into what appears to be an appendage that pulls the cell forward. The process behind this involves the gel of the ectoplasm, and sol, more fluid, portion of the endoplasm. To create the pseudopod, the gel of the ectoplasm begins to convert to sol which, along with the endoplasm, pushes a portion of the plasma membrane into an appendage. Once the pseudopod is extended, the sol within begins to peripherally convert back to gel, converting back to the ectoplasm as the lagging cell body flows up into the pseudopod moving the cell forward. Though research has shown aspects of the
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is com ...
(specifically
microfilament Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin, but are modified by and interact with numerous other pr ...
s) assist with pseudopod formation, the exact mechanism is unknown. Research on the shelled amoeba ''
Difflugia ''Difflugia'' is the largest genus of Arcellinida, one of several groups of Tubulinea within the eukaryote supergroup Amoebozoa. Arcellinida species produce shells or tests from mineral particles or biogeonic elements (e.g. diatom frustules) and ...
'' demonstrated that microfilaments lie both parallel and perpendicular to the axis of contraction of the plasma membrane to assist with plasma membrane extension into an appendage.


Processes within the endoplasm


Cellular respiration

The mitochondria are vital to the efficiency of eukaryotes. These organelles breakdown simple sugars like glucose to create a multitude of ATP (
adenosine triphosphate Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms o ...
) molecules. ATP provides the energy for protein synthesis, which takes about 75% of the cell's energy, as well as other cellular processes like signaling pathways. Present in a cell's endoplasm, the number of mitochondria varies based on the cell's metabolic needs. Cells that must make a large amount of proteins or breakdown a lot of material require a large amount of mitochondria. Glucose is broken down through three sequential processes: glycolysis, the
citric acid cycle The citric acid cycle (CAC)—also known as the Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and protein ...
, and the electron transport chain.


Protein synthesis

Protein synthesis begins at the ribosome, both free ones and those bound to the rough endoplasmic reticulum. Each ribosome is composed of 2 subunits and is responsible for translating genetic codes from
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
into proteins by creating strings of
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
s called
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
s. Proteins are usually not ready for their final target after leaving the ribosome. Ribosomes attached to endoplasmic reticulum release their protein chains into the lumen of the endoplasmic reticulum, which is the beginning of the endomembrane system. Within the ER the proteins are folded and modified by the addition of molecules like carbohydrates, then are sent to the
Golgi apparatus The Golgi apparatus (), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. Part of the endomembrane system in the cytoplasm, it packages proteins into membrane-bound vesicles ...
, where they are further modified and packaged to be sent to their final destination. Vesicles are responsible for transport in between components of the endomembrane system and the plasma membrane.


Other metabolic activities

In addition to these 2 main processes, there are many other activities that take place in the endoplasm.
Lysosome A lysosome () is a membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that can break down many kinds of biomolecules. A lysosome has a specific composition, of both its membrane pr ...
s degrade waste and toxins with the enzymes they contain. Smooth endoplasmic reticulum makes hormones and lipids, degrades toxins, and controls cellular levels of calcium. Though most control of cell division is present in the nucleus, the
centrosome In cell biology, the centrosome (Latin centrum 'center' + Greek sōma 'body') (archaically cytocentre) is an organelle that serves as the main microtubule organizing center (MTOC) of the animal cell, as well as a regulator of cell-cycle prog ...
s present in the endoplasm assist with spindle formation. The endoplasm is the site of many activities necessary for the cell to maintain
homeostasis In biology, homeostasis (British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
.


References

{{Authority control Cell anatomy Cytoplasm