The name electrospray is used for an apparatus that employs electricity to disperse a liquid or for the fine aerosol resulting from this process. High voltage is applied to a liquid supplied through an emitter (usually a glass or metallic capillary). Ideally the liquid reaching the emitter tip forms a
Taylor cone
A Taylor cone refers to the cone observed in electrospinning, electrospraying and hydrodynamic spray processes from which a jet of charged particles emanates above a threshold voltage. Aside from electrospray ionization in mass spectrometry, the ...
, which emits a liquid jet through its apex.
Varicose waves on the surface of the jet lead to the formation of small and highly charged liquid droplets, which are radially dispersed due to
Coulomb
The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI).
In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to elementary char ...
repulsion.
History
In the late 16th century
William Gilbert[Gilbert, W. (1628) De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth), London, Peter Short] set out to describe the behaviour of magnetic and electrostatic phenomena. He observed that, in the presence of a charged piece of amber, a drop of water deformed into a cone. This effect is clearly related to electrosprays, even though Gilbert did not record any observation related to liquid dispersion under the effect of the electric field.
In 1750 the French clergyman and physicist
Jean-Antoine (Abbé) Nollet noted water flowing from a vessel would aerosolize if the vessel was electrified and placed near electrical ground. He also noted that similarly "a person, electrified by connection to a high-voltage generator, would not bleed normally if he were to cut himself; blood would spray from the wound".
In 1882,
Lord Rayleigh
John William Strutt, 3rd Baron Rayleigh, (; 12 November 1842 – 30 June 1919) was an English mathematician and physicist who made extensive contributions to science. He spent all of his academic career at the University of Cambridge. Amo ...
theoretically estimated the maximum amount of charge a liquid droplet could carry; this is now known as the "Rayleigh limit". His prediction that a droplet reaching this limit would throw out fine jets of liquid was confirmed experimentally more than 100 years later.
In 1914,
John Zeleny
John Zeleny (March 26, 1872 – June 19, 1951) was an American physicist who, in 1911, invented the Zeleny electroscope. He also studied the effect of an electric field on a liquid meniscus. His work is seen by some as a beginning to emergent te ...
published work on the behaviour of fluid droplets at the end of glass capillaries. This report presents experimental evidence for several electrospray operating regimes (dripping, burst, pulsating, and cone-jet). A few years later, Zeleny captured the first time-lapse images of the dynamic liquid meniscus.
Between 1964 and 1969
Sir Geoffrey Ingram Taylor produced the theoretical underpinning of electrospraying.
Taylor modeled the shape of the cone formed by the fluid droplet under the effect of an electric field; this characteristic droplet shape is now known as the
Taylor cone
A Taylor cone refers to the cone observed in electrospinning, electrospraying and hydrodynamic spray processes from which a jet of charged particles emanates above a threshold voltage. Aside from electrospray ionization in mass spectrometry, the ...
. He further worked with J. R. Melcher to develop the "leaky dielectric model" for conducting fluids.
[Melcher, J. R. & Taylor, G. (1969) Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses. Annual Review of Fluid Mechanics, 1, 111-146]
Mechanism
To simplify the discussion, the following paragraphs will address the case of a positive electrospray with the high voltage applied to a metallic emitter. A classical electrospray setup is considered, with the emitter situated at a distance
from a grounded counter-electrode. The liquid being sprayed is characterized by its viscosity
, surface tension
, conductivity
, and relative permittivity
.
Effect of small electric fields on liquid menisci
Under the effect of surface tension, the liquid meniscus assumes a semi-spherical shape at the tip of the emitter. Application of the positive voltage
will induce the electric field:
:
where
is the liquid radius of curvature. This field leads to liquid polarization: the negative/positive charge carriers migrate toward/away from the electrode where the voltage is applied. At voltages below a certain threshold, the liquid quickly reaches a new equilibrium geometry with a smaller radius of curvature.
The Taylor cone
Voltages above the threshold draw the liquid into a cone. Sir
Geoffrey Ingram Taylor
Sir Geoffrey Ingram Taylor OM FRS FRSE (7 March 1886 – 27 June 1975) was a British physicist and mathematician, and a major figure in fluid dynamics and wave theory. His biographer and one-time student, George Batchelor, described him as " ...
described the theoretical shape of this cone based on the assumptions that (1) the surface of the cone is an equipotential surface and (2) the cone exists in a steady state equilibrium.
To meet both of these criteria the electric field must have
azimuth
An azimuth (; from ar, اَلسُّمُوت, as-sumūt, the directions) is an angular measurement in a spherical coordinate system. More specifically, it is the horizontal angle from a cardinal direction, most commonly north.
Mathematicall ...
al symmetry and have
dependence to balance the surface tension and produce the cone. The solution to this problem is:
:
where
(equipotential surface) exists at a value of
(regardless of R) producing an equipotential cone. The magic angle necessary for
for all R is a zero of the
Legendre polynomial
In physical science and mathematics, Legendre polynomials (named after Adrien-Marie Legendre, who discovered them in 1782) are a system of complete and orthogonal polynomials, with a vast number of mathematical properties, and numerous applicat ...
of order 1/2,
. There is only one zero between 0 and
at 130.7099°, which is the complement of the Taylor's now famous 49.3° angle.
Singularity development
The apex of the conical meniscus cannot become infinitely small. A singularity develops when the hydrodynamic
relaxation time
In the physical sciences, relaxation usually means the return of a perturbed system into equilibrium.
Each relaxation process can be categorized by a relaxation time τ. The simplest theoretical description of relaxation as function of time ' ...
becomes larger than the charge
relaxation time
In the physical sciences, relaxation usually means the return of a perturbed system into equilibrium.
Each relaxation process can be categorized by a relaxation time τ. The simplest theoretical description of relaxation as function of time ' ...
. The undefined symbols stand for characteristic length
and vacuum permittivity
. Due to intrinsic varicose instability, the charged liquid jet ejected through the cone apex breaks into small charged droplets, which are radially dispersed by the space-charge.
Closing the electrical circuit
The charged liquid is ejected through the cone apex and captured on the counter electrode as charged droplets or positive ions. To balance the charge loss, the excess negative charge is neutralized electrochemically at the emitter. Imbalances between the amount of charge generated electrochemically and the amount of charge lost at the cone apex can lead to several electrospray operating regimes. For cone-jet electrosprays, the potential at the metal/liquid interface self-regulates to generate the same amount of charge as that lost through the cone apex.
Applications
Electrospray ionization
Electrospray became widely used as ionization source for mass spectrometry after the
Fenn group successfully demonstrated its use as ion source for the analysis of large biomolecules.
Liquid metal ion source
A
liquid metal ion source A liquid metal ion source (LMIS) is an ion source which uses metal that is heated to the liquid state and used to form an electrospray to form ions. An electrospray Taylor cone is formed by the application of a strong electric field and ions are ...
(LMIS) uses electrospray in conjunction with liquid metal to form
ion
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
s.
Ions are produced by field evaporation at tip of the Taylor cone. Ions from a LMIS are used in
ion implantation
Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the physical, chemical, or electrical properties of the target. Ion implantation is used in semiconductor device fab ...
and in
focused ion beam
Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a s ...
instruments.
Electrospinning
Similarly to the standard electrospray, the application of high voltage to a polymer solution can result in the formation of a cone-jet geometry. If the jet turns into very fine fibers instead of breaking into small droplets, the process is known as electrospinning .
Colloid thrusters
Electrospray techniques are used as low thrust
electric propulsion
Spacecraft electric propulsion (or just electric propulsion) is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generate thrust to modify the velocity of a sp ...
rocket engine
A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordanc ...
s to control
satellite
A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioisotope ...
s, since the fine-controllable particle ejection allows precise and effective thrust.
Deposition of particles for nanostructures
Electrospray may be used in
nanotechnology
Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal o ...
, for example to deposit single particles on surfaces. This is done by spraying
colloids
A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
on average containing only one particle per droplet. The solvent evaporates, leaving an
aerosol
An aerosol is a suspension (chemistry), suspension of fine solid particles or liquid Drop (liquid), droplets in air or another gas. Aerosols can be natural or Human impact on the environment, anthropogenic. Examples of natural aerosols are fog o ...
stream of single particles of the desired type. The ionizing property of the process is not crucial for the application but may be used in
electrostatic precipitation
An electrostatic precipitator (ESP) is a filterless device that removes fine particles, like dust and smoke, from a flowing gas using the force of an induced electrostatic charge minimally impeding the flow of gases through the unit.
In con ...
of the particles.
Deposition of ions as precursors for nanoparticles and nanostructures
Instead of depositing
nanoparticle
A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
s, nanoparticles and nano structures can also fabricated in situ by depositing metal ions to desired locations. Electrochemical reduction of ions to atoms and in situ assembly was believed to be the mechanism of nano structure formation.
Fabrication of drug carriers
Electrospray has garnered attention in the field of drug delivery, and it has been used to fabricate drug carriers including polymer microparticles used in
immunotherapy
Immunotherapy or biological therapy is the treatment of disease by activating or suppressing the immune system. Immunotherapies designed to elicit or amplify an immune response are classified as ''activation immunotherapies,'' while immunotherap ...
as well as
lipoplexes
Gene therapy utilizes the delivery of DNA into cells, which can be accomplished by several methods, summarized below. The two major classes of methods are those that use recombinant viruses (sometimes called biological nanoparticles or viral vector ...
used for
nucleic acid
Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
delivery. The sub-micrometer-sized drug particles created by electrospray possess increased dissolution rates, thus increased bioavailability due to the increased surface area.
The side-effects of drugs can thus be reduced, as smaller dosage is enough for the same effect.
Air purifiers
Electrospray is used in some
air purifier
An air purifier or air cleaner is a device which removes contaminants from the air in a room to improve indoor air quality. These devices are commonly marketed as being beneficial to allergy sufferers and asthmatics, and at reducing or eliminating ...
s. Particulate suspended in air can be charged by aerosol electrospray, manipulated by an electric field, and collected on a grounded electrode. This approach minimizes the production of
ozone
Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
which is common to other types of air purifiers.
See also
*
Flow focusing
References
{{reflist
Electric and magnetic fields in matter
Industrial equipment
Aerosols