HOME

TheInfoList



OR:

Electroplasticity, describes the enhanced
plastic Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptab ...
behavior of a solid material under the application of an electric field. This electric field could be internal, resulting in current flow in conducting materials, or external. The effect of electric field on mechanical properties ranges from simply enhancing existing plasticity, such as reducing the flow stress in already
ductile Ductility is a mechanical property commonly described as a material's amenability to drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stres ...
metals, to promoting plasticity in otherwise brittle
ceramics A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain ...
. The exact mechanisms that control electroplasticity vary based on the material and the exact conditions (e.g.,
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
, strain rate, grain size, etc.). Enhancing the plasticity of materials is of great practical interest as plastic deformation provides an efficient way of transforming raw materials into final products. The use of electroplasticity to improve processing of materials is known as electrically assisted manufacturing.


History

Electroplasticity was first discovered by Eugene S. Machlin, who reported in 1959 that applying an electric field made
NaCl Sodium chloride , commonly known as salt (although sea salt also contains other chemical salts), is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35.45 g/ ...
weaker and more ductile. Since then, the effect of electric fields on plasticity has been studied in many materials systems including
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
, ceramics, and semiconductors. Various mechanisms have been posited to explain electroplastic effects and their dependence on materials properties and external conditions. For most materials the electroplastic effect arises from a combination of multiple mechanisms. This should not be all that surprising given that the electric fields directly affect
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
which dictate the bonding in materials and therefore all higher level phenomena such as dislocation motion, flow stress, vacancy diffusion, etc.


Electroplasticity in Metals

The application of DC electric fields is known to reduce the flow stress of metals and metal
alloys An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility ...
while increasing the fracture strain. Several mechanisms have been put forth to explain this effect including Joule heating, electron wind force, dissolution of
metallic bonds Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be descri ...
, and unpinning of dislocations due the induction of magnetic fields. None of these mechanisms on their own can sufficiently explain the full extent of electroplasticity in metals. The application of electric fields has been shown to enhance the effect of
superplasticity In materials science, superplasticity is a state in which solid crystalline material is deformed well beyond its usual breaking point, usually over about 600% during tensile deformation. Such a state is usually achieved at high homologous tempe ...
which occurs in polycrystalline metals at high homologous temperatures (T>0.5Tm). This is likely due to the electric field reducing cavitation, which can lead to premature fracture, and grain growth, which can prevent superplastic flow due to grain boundary sliding, in addition to reducing the
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules p ...
for grain boundary sliding. The strength of the electroplastic effect scales with the magnitude of the applied electric field past some threshold value. While the application of an electric field typically augments the plasticity of metals there are alloy systems that show a reduction in plasticity. Conrad and Li found that the activation energy for grain boundary sliding in Zn-5 wt.% Al increased by nearly 20% under the application of a 2 kV cm^ DC electric field, resulting in more difficult deformation.


Electroplasticity in Ceramics

The application of electric fields to ceramics can give rise to plasticity in materials that traditionally exhibit no plastic deformation. High homologous temperatures are, however, typically necessary to achieve significant plastic deformation in ceramic materials. Plastic deformation ceramic oxides was found by Conrad et al. to occur under relatively modest electric field strengths (0.02-0.32 kV cm^). Strain-mediating defects such as vacancies and dislocations tend to be charged in ceramic materials due to the ionic or
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms ...
nature of bonding. Thus, the movement of electrons can have a direct impact on the mobility of these defects in ceramics and subsequent plastic deformation. The primary effect of the electric field in the deformation of fine-grained ceramic oxides is to shift the diffusion pathway from bulk diffusion to grain boundary diffusion, resulting in greater diffusion and easier grain boundary sliding.{{Cite journal , last1=Campbell , first1=J. , last2=Fahmy , first2=Y. , last3=Conrad , first3=H. , date=November 1999 , title=Influence of an electric field on the plastic deformation of fine-grained Al2O3 , url=http://dx.doi.org/10.1007/s11661-999-0119-4 , journal=Metallurgical and Materials Transactions A , volume=30 , issue=11 , pages=2817–2823 , doi=10.1007/s11661-999-0119-4 , bibcode=1999MMTA...30.2817C , s2cid=136817773 , issn=1073-5623


References

Electrochemistry Materials science