The wave impedance of an
electromagnetic wave
In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
is the
ratio
In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of the transverse components of the
electric
Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by ...
and
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s (the transverse components being those at right angles to the direction of propagation). For a transverse-electric-magnetic (
TEM Tem or TEM may refer to:
Acronyms
* Threat and error management, an aviation safety management model.
* Telecom Expense Management
* Telecom Equipment Manufacturer
* TEM (currency), local to Volos, Greece
* TEM (nuclear propulsion), a Russian ...
)
plane wave
In physics, a plane wave is a special case of wave or field: a physical quantity whose value, at any moment, is constant through any plane that is perpendicular to a fixed direction in space.
For any position \vec x in space and any time t, th ...
traveling through a homogeneous
medium
Medium may refer to:
Science and technology
Aviation
*Medium bomber, a class of war plane
*Tecma Medium, a French hang glider design
Communication
* Media (communication), tools used to store and deliver information or data
* Medium of ...
, the wave impedance is everywhere equal to the intrinsic impedance of the medium. In particular, for a plane wave travelling through empty space, the wave impedance is equal to the
impedance of free space The impedance of free space, , is a physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space. That is, , where is the electric field strength and is the magnetic fiel ...
. The symbol ''Z'' is used to represent it and it is expressed in units of
ohm
Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm.
Ohm or OHM may also refer to:
People
* Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm''
* Germán Ohm (born 1936), Mexican boxer
* Jörg Ohm (b ...
s. The symbol ''η'' (
eta
Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
) may be used instead of ''Z'' for wave impedance to avoid confusion with
electrical impedance
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
Quantitatively, the impedance of a two-terminal circuit element is the ratio of the comp ...
.
Definition
The wave impedance is given by
:
where
is the electric field and
is the magnetic field, in
phasor
In physics and engineering, a phasor (a portmanteau of phase vector) is a complex number representing a sinusoidal function whose amplitude (''A''), angular frequency (''ω''), and initial phase (''θ'') are time-invariant. It is related to ...
representation. The impedance is, in general, a
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
.
In terms of the parameters of an electromagnetic wave and the medium it travels through, the wave impedance is given by
:
where ''μ'' is the
magnetic permeability
In electromagnetism, permeability is the measure of magnetization that a material obtains in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter ''μ''. The term was coined by William ...
, ''ε'' is the (real)
electric permittivity
In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' ( epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in ...
and ''σ'' is the
electrical conductivity
Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
of the material the wave is travelling through (corresponding to the imaginary component of the permittivity multiplied by omega). In the equation, ''j'' is the
imaginary unit
The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition an ...
, and ''ω'' is the
angular frequency
In physics, angular frequency "''ω''" (also referred to by the terms angular speed, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. It refers to the angular displacement per unit tim ...
of the wave. Just as for
electrical impedance
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
Quantitatively, the impedance of a two-terminal circuit element is the ratio of the comp ...
, the impedance is a function of frequency. In the case of an ideal
dielectric
In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the mate ...
(where the conductivity is zero), the equation reduces to the real number
:
In free space
In
free space
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
the wave impedance of plane waves is:
:
(where ''ε''
0 is the
permittivity constant in free space and ''μ''
0 is the
permeability constant
The vacuum magnetic permeability (variously ''vacuum permeability'', ''permeability of free space'', ''permeability of vacuum''), also known as the magnetic constant, is the magnetic permeability in a classical vacuum. It is a physical constant, ...
in free space). Now, since
:
(by the
SI definition of the
metre
The metre (British spelling) or meter (American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its pref ...
),
:
.
Hence the value essentially depends on
.
Until May 20th, 2019,
, hence
:
.
The currently accepted value of
is
:
.
In an unbounded dielectric
In an
isotropic
Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
,
homogeneous
Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
dielectric
In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the mate ...
with negligible magnetic properties, i.e.
H/m and
F/m. So, the value of wave impedance in a perfect dielectric is
:
,
where
is the relative
dielectric constant
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulat ...
.
In a waveguide
For any
waveguide
A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities de ...
in the form of a hollow metal tube, (such as rectangular guide, circular guide, or double-ridge guide), the wave impedance of a travelling wave is dependent on the frequency
, but is the same throughout the guide. For transverse electric (
TE) modes of propagation the wave impedance is:
:
where ''f''
''c'' is the cut-off frequency of the mode, and for transverse magnetic (
TM) modes of propagation the wave impedance is:
:
Above the cut-off (), the impedance is real (resistive) and the wave carries energy. Below cut-off the impedance is imaginary (reactive) and the wave is
evanescent. These expressions neglect the effect of resistive loss in the walls of the waveguide. For a waveguide entirely filled with a homogeneous dielectric medium, similar expressions apply, but with the wave impedance of the medium replacing ''Z''
0. The presence of the dielectric also modifies the cut-off frequency ''f''
''c''.
For a waveguide or transmission line containing more than one type of dielectric medium (such as
microstrip
Microstrip is a type of electrical transmission line which can be fabricated with any technology where a conductor is separated from a ground plane by a dielectric layer known as the substrate. Microstrip lines are used to convey microwave-frequ ...
), the wave impedance will in general vary over the cross-section of the line.
See also
*
Characteristic impedance
The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a single wave propagating along the line; that is, a wave travelling in one direction in ...
*
Impedance (disambiguation)
*
Impedance of free space The impedance of free space, , is a physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space. That is, , where is the electric field strength and is the magnetic fiel ...
References
{{FS1037C MS188
Wave mechanics
Electromagnetic radiation