Electrochemistry is the branch of
physical chemistry
Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mecha ...
concerned with the relationship between
electrical potential difference, as a measurable and quantitative phenomenon, and identifiable
chemical change
Chemical changes occur when a substance combines with another to form a new substance, called chemical synthesis or, alternatively, chemical decomposition into two or more different substances. These processes are called chemical reactions and, ...
, with the potential difference as an outcome of a particular chemical change, or vice versa. These reactions involve electrons moving via an electronically-conducting phase (typically an external electrical circuit, but not necessarily, as in
electroless plating
Electroless plating, also known as chemical plating or autocatalytic plating, is a class of industrial chemical processes that create metal coatings on various materials by autocatalytic chemical reduction of metal cations in a liquid bath. This c ...
) between electrodes separated by an ionically conducting and electronically insulating electrolyte (or ionic
species
In biology, a species is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate s ...
in a
solution
Solution may refer to:
* Solution (chemistry), a mixture where one substance is dissolved in another
* Solution (equation), in mathematics
** Numerical solution, in numerical analysis, approximate solutions within specified error bounds
* Soluti ...
).
When a chemical reaction is driven by an electrical potential difference, as in
electrolysis
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
, or if a potential difference results from a chemical reaction as in an
electric battery
An electric battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices.
When a battery is supplying power, its positive terminal is the cathode and its negati ...
or
fuel cell
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requ ...
, it is called an ''electrochemical'' reaction. Unlike in other chemical reactions, in electrochemical reactions electrons are not transferred directly between atoms, ions, or molecules, but via the aforementioned electronically-conducting circuit. This phenomenon is what distinguishes an electrochemical reaction from a conventional chemical reaction.
History
16th–18th century
Understanding of electrical matters began in the sixteenth century. During this century, the English scientist
William Gilbert spent 17 years experimenting with
magnetism
Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
and, to a lesser extent, electricity. For his work on magnets, Gilbert became known as the ''"Father of Magnetism."'' He discovered various methods for producing and strengthening magnets.
In 1663, the
German
German(s) may refer to:
* Germany (of or related to)
** Germania (historical use)
* Germans, citizens of Germany, people of German ancestry, or native speakers of the German language
** For citizens of Germany, see also German nationality law
**Ge ...
physicist
A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe.
Physicists generally are interested in the root or ultimate caus ...
Otto von Guericke
Otto von Guericke ( , , ; spelled Gericke until 1666; November 20, 1602 – May 11, 1686 ; November 30, 1602 – May 21, 1686 ) was a German scientist, inventor, and politician. His pioneering scientific work, the development of experimental me ...
created the first electric generator, which produced static electricity by applying friction in the machine. The generator was made of a large
sulfur
Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
ball cast inside a glass globe, mounted on a shaft. The ball was rotated by means of a crank and an
electric spark
An electric spark is an abrupt electrical discharge that occurs when a sufficiently high electric field creates an ionized, electrically conductive channel through a normally-insulating medium, often air or other gases or gas mixtures. Michael F ...
was produced when a pad was rubbed against the ball as it rotated. The globe could be removed and used as source for experiments with electricity.
By the mid-18th century the
French chemist
A chemist (from Greek ''chēm(ía)'' alchemy; replacing ''chymist'' from Medieval Latin ''alchemist'') is a scientist trained in the study of chemistry. Chemists study the composition of matter and its properties. Chemists carefully describe th ...
Charles François de Cisternay du Fay
Charles François de Cisternay du Fay (14 September 1698 – 16 July 1739) was a French chemist and superintendent of the Jardin du Roi.
He discovered the existence of two types of electricity and named them " vitreous" and " resinous" (later ...
had discovered two types of static electricity, and that like charges repel each other whilst unlike charges attract. Du Fay announced that electricity consisted of two fluids: ''"vitreous"'' (from the
Latin
Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
for ''"glass"''), or positive, electricity; and ''"resinous,"'' or negative, electricity. This was the
''two-fluid theory'' of electricity, which was to be opposed by
Benjamin Franklin
Benjamin Franklin ( April 17, 1790) was an American polymath who was active as a writer, scientist, inventor, statesman, diplomat, printer, publisher, and political philosopher. Encyclopædia Britannica, Wood, 2021 Among the leading inte ...
's ''one-fluid theory'' later in the century.
In 1785,
Charles-Augustin de Coulomb
Charles-Augustin de Coulomb (; ; 14 June 1736 – 23 August 1806) was a French officer, engineer, and physicist. He is best known as the eponymous discoverer of what is now called Coulomb's law, the description of the electrostatic force of attrac ...
developed the law of
electrostatic
Electrostatics is a branch of physics that studies electric charges at rest (static electricity).
Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber ...
attraction as an outgrowth of his attempt to investigate the law of electrical repulsions as stated by
Joseph Priestley
Joseph Priestley (; 24 March 1733 – 6 February 1804) was an English chemist, natural philosopher, separatist theologian, grammarian, multi-subject educator, and liberal political theorist. He published over 150 works, and conducted exp ...
in England.
In the late 18th century the
Italian
Italian(s) may refer to:
* Anything of, from, or related to the people of Italy over the centuries
** Italians, an ethnic group or simply a citizen of the Italian Republic or Italian Kingdom
** Italian language, a Romance language
*** Regional Ita ...
physician
A physician (American English), medical practitioner (Commonwealth English), medical doctor, or simply doctor, is a health professional who practices medicine, which is concerned with promoting, maintaining or restoring health through th ...
and
anatomist
Anatomy () is the branch of biology concerned with the study of the structure of organisms and their parts. Anatomy is a branch of natural science that deals with the structural organization of living things. It is an old science, having its ...
Luigi Galvani marked the birth of electrochemistry by establishing a bridge between chemical reactions and electricity on his essay ''"De Viribus Electricitatis in Motu Musculari Commentarius"'' (Latin for Commentary on the Effect of Electricity on Muscular Motion) in 1791 where he proposed a ''"nerveo-electrical substance"'' on biological life forms.
[John Robert Norris, Douglas W. Ribbons (1972]
Methods in microbiology, Volume 6
Academic Press. p. 248
In his essay Galvani concluded that animal tissue contained a here-to-fore neglected innate, vital force, which he termed ''"animal electricity,"'' which activated
nerve
A nerve is an enclosed, cable-like bundle of nerve fibers (called axons) in the peripheral nervous system.
A nerve transmits electrical impulses. It is the basic unit of the peripheral nervous system. A nerve provides a common pathway for the e ...
s and
muscle
Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscl ...
s spanned by metal probes. He believed that this new force was a form of electricity in addition to the ''"natural"'' form produced by
lightning
Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
or by the
electric eel
The electric eels are a genus, ''Electrophorus'', of neotropical freshwater fish from South America in the family Gymnotidae. They are known for their ability to stun their prey by generating electricity, delivering shocks at up to 860 volt ...
and
torpedo ray
The electric rays are a group of batoid, rays, flattened cartilaginous fish with enlarged pectoral fins, composing the order Torpediniformes . They are known for being capable of producing an electric discharge, ranging from 8 to 220 volts, dep ...
as well as the ''"artificial"'' form produced by
friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:
*Dry friction is a force that opposes the relative lateral motion of t ...
(i.e., static electricity).
[Frederick Collier Bakewel]
Electric science; its history, phenomena, and applications
Ingram, Cooke (1853) pp. 27–31
Galvani's scientific colleagues generally accepted his views, but
Alessandro Volta
Alessandro Giuseppe Antonio Anastasio Volta (, ; 18 February 1745 – 5 March 1827) was an Italian physicist, chemist and lay Catholic who was a pioneer of electricity and power who is credited as the inventor of the electric battery and the ...
rejected the idea of an ''"animal electric fluid,"'' replying that the frog's legs responded to differences in
metal temper
Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature be ...
, composition, and bulk.
[ Galvani refuted this by obtaining muscular action with two pieces of the same material. Nevertheless, Volta's experimentation led him to develop the first practical battery, which took advantage of the relatively high energy (weak bonding) of zinc and could deliver an electrical current for much longer than any other device known at the time.
]
19th century
In 1800, William Nicholson and Johann Wilhelm Ritter succeeded in decomposing water into hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
and oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
by electrolysis
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
using Volta's battery. Soon thereafter Ritter discovered the process of electroplating
Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be ...
. He also observed that the amount of metal deposited and the amount of oxygen produced during an electrolytic process depended on the distance between the electrode
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials de ...
s.[ By 1801, Ritter observed thermoelectric currents and anticipated the discovery of thermoelectricity by ]Thomas Johann Seebeck
Thomas Johann Seebeck (; 9 April 1770 – 10 December 1831) was a Baltic German physicist, who, in 1822, observed a relationship between heat and magnetism. Later, in 1823, Ørsted called this phenomenon thermoelectric effect.
Seebeck was b ...
.
By the 1810s, William Hyde Wollaston
William Hyde Wollaston (; 6 August 1766 – 22 December 1828) was an English chemist and physicist who is famous for discovering the chemical elements palladium and rhodium. He also developed a way to process platinum ore into malleable ingo ...
made improvements to the galvanic cell
A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous Oxidation-Reduction reactions. A common apparatus ...
.
Sir Humphry Davy
Sir Humphry Davy, 1st Baronet, (17 December 177829 May 1829) was a British chemist and inventor who invented the Davy lamp and a very early form of arc lamp. He is also remembered for isolating, by using electricity, several elements for t ...
's work with electrolysis led to the conclusion that the production of electricity in simple electrolytic cell
An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would not otherwise occur. The external energy source is a voltage applied between the cell′s two electrod ...
s resulted from chemical action and that chemical combination occurred between substances of opposite charge. This work led directly to the isolation of metallic sodium
Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable iso ...
and potassium
Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosphe ...
by electrolysis of their molten salts, and of the alkaline earth metal
The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).. The elements have very similar properties: they are al ...
s from theirs, in 1808.
Hans Christian Ørsted's discovery of the magnetic effect of electric currents in 1820 was immediately recognized as an epoch-making advance, although he left further work on electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
to others. André-Marie Ampère quickly repeated Ørsted's experiment, and formulated them mathematically.
In 1821, Estonian-German physicist
A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe.
Physicists generally are interested in the root or ultimate caus ...
Thomas Johann Seebeck
Thomas Johann Seebeck (; 9 April 1770 – 10 December 1831) was a Baltic German physicist, who, in 1822, observed a relationship between heat and magnetism. Later, in 1823, Ørsted called this phenomenon thermoelectric effect.
Seebeck was b ...
demonstrated the electrical potential between the juncture points of two dissimilar metals when there is a temperature difference between the joints.[Brian Scott Baigri]
Electricity and magnetism: a historical perspective
Greenwood Publishing Group (2007) p. 73
In 1827, the German scientist Georg Ohm
Georg Simon Ohm (, ; 16 March 1789 – 6 July 1854) was a German physicist and mathematician. As a school teacher, Ohm began his research with the new electrochemical cell, invented by Italian scientist Alessandro Volta. Using equipment of his o ...
expressed his law
Law is a set of rules that are created and are enforceable by social or governmental institutions to regulate behavior,Robertson, ''Crimes against humanity'', 90. with its precise definition a matter of longstanding debate. It has been vario ...
in this famous book ''"Die galvanische Kette, mathematisch bearbeitet"'' (The Galvanic Circuit Investigated Mathematically) in which he gave his complete theory of electricity.[
In 1832, ]Michael Faraday
Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
's experiments led him to state his two laws of electrochemistry. In 1836, John Daniell invented a primary cell which solved the problem of polarization by introducing copper ions into the solution near the positive electrode and thus eliminating hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
gas generation. Later results revealed that at the other electrode, amalgam
Amalgam most commonly refers to:
* Amalgam (chemistry), mercury alloy
* Amalgam (dentistry), material of silver tooth fillings
** Bonded amalgam, used in dentistry
Amalgam may also refer to:
* Amalgam Comics, a publisher
* Amalgam Digital
...
ated zinc
Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
(i.e., zinc alloyed with mercury
Mercury commonly refers to:
* Mercury (planet), the nearest planet to the Sun
* Mercury (element), a metallic chemical element with the symbol Hg
* Mercury (mythology), a Roman god
Mercury or The Mercury may also refer to:
Companies
* Merc ...
) would produce a higher voltage.
William Grove produced the first fuel cell
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requ ...
in 1839. In 1846, Wilhelm Weber developed the electrodynamometer
The wattmeter is an instrument for measuring the electric active power (or the average of the rate of flow of electrical energy) in watts of any given circuit. Electromagnetic wattmeters are used for measurement of utility frequency and audio ...
. In 1868, Georges Leclanché
Georges Leclanché (October 9, 1839 – September 14, 1882) was a French electrical engineer chiefly remembered for his invention of the Leclanché cell, one of the first modern electrical batteries and the forerunner of the modern dry cell batter ...
patented a new cell which eventually became the forerunner to the world's first widely used battery, the zinc–carbon cell.[Keith James Laidle]
The world of physical chemistry
Oxford University Press (1995) pp. 219–220
Svante Arrhenius
Svante August Arrhenius ( , ; 19 February 1859 – 2 October 1927) was a Swedes, Swedish scientist. Originally a physicist, but often referred to as a chemist, Arrhenius was one of the founders of the science of physical chemistry. He received ...
published his thesis in 1884 on ''Recherches sur la conductibilité galvanique des électrolytes'' (Investigations on the galvanic conductivity of electrolytes). From his results the author concluded that electrolyte
An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dis ...
s, when dissolved in water, become to varying degrees split or dissociated into electrically opposite positive and negative ions.
In 1886, Paul Héroult
Paul (Louis-Toussaint) Héroult (10 April 1863 – 9 May 1914) was a French scientist. He was the inventor of the aluminium electrolysis and developed the first successful commercial electric arc furnace. He lived in Thury-Harcourt, Normandy. ...
and Charles M. Hall developed an efficient method (the Hall–Héroult process
The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite, aluminium's chief ore, through the Bayer process) in molten cryolite, and el ...
) to obtain aluminium
Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
using electrolysis of molten alumina.
In 1894, Friedrich Ostwald concluded important studies of the conductivity
Conductivity may refer to:
*Electrical conductivity, a measure of a material's ability to conduct an electric current
**Conductivity (electrolytic), the electrical conductivity of an electrolyte in solution
** Ionic conductivity (solid state), ele ...
and electrolytic dissociation of organic acids.
Walther Hermann Nernst developed the theory of the electromotive force
In electromagnetism and electronics, electromotive force (also electromotance, abbreviated emf, denoted \mathcal or ) is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical ''transd ...
of the voltaic cell in 1888. In 1889, he showed how the characteristics of the voltage produced could be used to calculate the free energy change in the chemical reaction producing the voltage. He constructed an equation, known as Nernst equation
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction ( half-cell or full cell reaction) from the standard electrode potential, absolute tempe ...
, which related the voltage of a cell to its properties.
In 1898, Fritz Haber
Fritz Haber (; 9 December 186829 January 1934) was a German chemist who received the Nobel Prize in Chemistry in 1918 for his invention of the Haber–Bosch process, a method used in industry to synthesize ammonia from nitrogen gas and hydrogen ...
showed that definite reduction products can result from electrolytic processes if the potential at the cathode
A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
is kept constant. In 1898, he explained the reduction of nitrobenzene in stages at the cathode and this became the model for other similar reduction processes.
20th century
In 1902, The Electrochemical Society
The Electrochemical Society is a learned society (professional association) based in the United States that supports scientific inquiry in the field of electrochemistry and solid-state science and related technology. The Society membership compri ...
(ECS) was founded.
In 1909, Robert Andrews Millikan
Robert Andrews Millikan (March 22, 1868 – December 19, 1953) was an American experimental physicist honored with the Nobel Prize for Physics in 1923 for the measurement of the elementary electric charge and for his work on the photoelectric e ...
began a series of experiments (see oil drop experiment
The oil drop experiment was performed by Robert A. Millikan and Harvey Fletcher in 1909 to measure the elementary electric charge (the charge of the electron). The experiment took place in the Ryerson Physical Laboratory at the University of C ...
) to determine the electric charge carried by a single electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
.
In 1911, Harvey Fletcher, working with Millikan, was successful in measuring the charge on the electron, by replacing the water droplets used by Millikan, which quickly evaporated, with oil droplets. Within one day Fletcher measured the charge of an electron within several decimal places
In 1923, Johannes Nicolaus Brønsted
Johannes Nicolaus Brønsted (; 22 February 1879 – 17 December 1947) was a Danish physical chemist, who developed the Brønsted–Lowry acid–base theory simultaneously with and independently of Martin Lowry.
Biography
Brønsted was born in ...
and Martin Lowry
Thomas Martin Lowry (; 26 October 1874 – 2 November 1936) was an English physical chemist who developed the Brønsted–Lowry acid–base theory simultaneously with and independently of Johannes Nicolaus Brønsted and was a founder-member an ...
published essentially the same theory about how acids and bases behave, using an electrochemical basis.
In 1937, Arne Tiselius
Arne Wilhelm Kaurin Tiselius (10 August 1902 – 29 October 1971) was a Swedish biochemist who won the Nobel Prize in Chemistry in 1948 "for his research on electrophoresis and adsorption analysis, especially for his discoveries concerning ...
developed the first sophisticated electrophoretic
Electrophoresis, from Ancient Greek ἤλεκτρον (ḗlektron, "amber") and φόρησις (phórēsis, "the act of bearing"), is the motion of dispersed particles relative to a fluid under the influence of a spatially uniform electric fi ...
apparatus. Some years later, he was awarded the 1948 Nobel Prize
The Nobel Prizes ( ; sv, Nobelpriset ; no, Nobelprisen ) are five separate prizes that, according to Alfred Nobel's will of 1895, are awarded to "those who, during the preceding year, have conferred the greatest benefit to humankind." Alfr ...
for his work in protein electrophoresis
Electrophoresis, from Ancient Greek ἤλεκτρον (ḗlektron, "amber") and φόρησις (phórēsis, "the act of bearing"), is the motion of dispersed particles relative to a fluid under the influence of a spatially uniform electric fie ...
.
A year later, in 1949, the International Society of Electrochemistry
The International Society of Electrochemistry (ISE) is a global scientific society founded in 1949. The Head Office of ISE is located now in Lausanne, Switzerland. ISE is a Member Organization of IUPAC. The Society has now more than 1900 Individual ...
(ISE) was founded.
By the 1960s–1970s quantum electrochemistry
The scientific school of Quantum electrochemistry began to form in the 1960s under Revaz Dogonadze. Generally speaking, the field comprises the notions arising in electrodynamics, quantum mechanics, and electrochemistry; and so is studied by a very ...
was developed by Revaz Dogonadze Revaz Dogonadze (November 21, 1931 – May 13, 1985) was a notable Georgian scientist, Corresponding Member of the Georgian National Academy of Sciences (GNAS) (1982), Doctor of Physical & Mathematical Sciences (Full Doctor) (1966), Professor (1972 ...
and his students.
Principles
Oxidation and reduction
The term "redox
Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate (chemistry), substrate change. Oxidation is the loss of Electron, electrons or an increase in the oxidation state, while reduction ...
" stands for reduction-oxidation. It refers to electrochemical processes involving electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
transfer to or from a molecule
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
or ion
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
, changing its oxidation state
In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
. This reaction can occur through the application of an external voltage or through the release of chemical energy. Oxidation and reduction describe the change of oxidation state that takes place in the atoms, ions or molecules involved in an electrochemical reaction. Formally, oxidation state is the hypothetical Electric charge, charge that an atom would have if all bonds to atoms of different elements were 100% Ionic bond, ionic. An atom or ion that gives up an electron to another atom or ion has its oxidation state increase, and the recipient of the negatively charged electron has its oxidation state decrease.
For example, when atomic sodium
Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable iso ...
reacts with atomic chlorine, sodium donates one electron and attains an oxidation state of +1. Chlorine accepts the electron and its oxidation state is reduced to −1. The sign of the oxidation state (positive/negative) actually corresponds to the value of each ion's electronic charge. The attraction of the differently charged sodium and chlorine ions is the reason they then form an ionic bond.
The loss of electrons from an atom or molecule is called oxidation, and the gain of electrons is reduction. This can be easily remembered through the use of mnemonic devices. Two of the most popular are ''"OIL RIG"'' (Oxidation Is Loss, Reduction Is Gain) and ''"LEO"'' the lion says ''"GER"'' (Lose Electrons: Oxidation, Gain Electrons: Reduction). Oxidation and reduction always occur in a paired fashion such that one species is oxidized when another is reduced. For cases where electrons are shared (covalent bonds) between atoms with large differences in electronegativity, the electron is assigned to the atom with the largest electronegativity in determining the oxidation state.
The atom or molecule which loses electrons is known as the ''reducing agent'', or ''reductant'', and the substance which accepts the electrons is called the ''oxidizing agent'', or ''oxidant''. Thus, the oxidizing agent is always being reduced in a reaction; the reducing agent is always being oxidized. Oxygen is a common oxidizing agent, but not the only one. Despite the name, an oxidation reaction does not necessarily need to involve oxygen. In fact, a fire can be fed by an oxidant other than oxygen; fluorine fires are often unquenchable, as fluorine is an even stronger oxidant (it has a weaker bond and higher electronegativity, and thus accepts electrons even better) than oxygen.
For reactions involving oxygen, the gain of oxygen implies the oxidation of the atom or molecule to which the oxygen is added (and the oxygen is reduced). In organic compounds, such as butane or ethanol, the loss of hydrogen implies oxidation of the molecule from which it is lost (and the hydrogen is reduced). This follows because the hydrogen donates its electron in covalent bonds with non-metals but it takes the electron along when it is lost. Conversely, loss of oxygen or gain of hydrogen implies reduction.
Balancing redox reactions
Electrochemical reactions in water are better analyzed by using the ion-electron method, where hydronium, H+, Hydroxide, OH− ion, Water (molecule), H2O and electrons (to compensate the oxidation changes) are added to the cell's half-reactions for oxidation and reduction.
Acidic medium
In acidic medium, hydronium, H+ ions and water are added to balance each half-reaction.
For example, when manganese reacts with sodium bismuthate.
:''Unbalanced reaction'': Mn2+ + NaBiO3 → Bi3+ +
:''Oxidation'': 4 H2O + Mn2+ → + 8 H+ + 5 e−
:''Reduction'': 2 e− + 6 H+ + → Bi3+ + 3 H2O
Finally, the reaction is balanced by multiplying the stoichiometric coefficients so the numbers of electrons in both half reactions match
:8 H2O + 2 Mn2+ → 2 + 16 H+ + 10 e−
:10 e− + 30 H+ + 5 → 5 Bi3+ + 15 H2O
and adding the resulting half reactions to give the balanced reaction:
:14 H+ + 2 Mn2+ + 5 NaBiO3 → 7 H2O + 2 + 5 Bi3+ + 5 Na+
Basic medium
In basic medium, Hydroxide, OH− ions and Water (molecule), water are added to balance each half-reaction. For example, in a reaction between potassium
Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosphe ...
and sodium sulfite:
:''Unbalanced reaction'': KMnO4 + Na2SO3 + H2O → MnO2 + Na2SO4 + KOH
:''Reduction'': 3 e− + 2 H2O + → MnO2 + 4 OH−
:''Oxidation'': 2 OH− + → + H2O + 2 e−
Here, 'spectator ions' (K+, Na+) were omitted from the half-reactions. By multiplying the stoichiometric coefficients so the numbers of electrons in both half reaction match:
:6 e− + 4 H2O + 2 → 2 MnO2 + 8 OH−
:6 OH− + 3 → 3 + 3 H2O + 6 e−
the balanced overall reaction is obtained:
:2 KMnO4 + 3 Na2SO3 + H2O → 2 MnO2 + 3 Na2SO4 + 2 KOH
Neutral medium
The same procedure as used in acidic medium can be applied, for example, to balance the Combustion, complete combustion of propane:
:''Unbalanced reaction'': C3H8 + O2 → CO2 + H2O
:''Reduction'': 4 H+ + O2 + 4 e− → 2 H2O
:''Oxidation'': 6 H2O + C3H8 → 3 CO2 + 20 e− + 20 H+
By multiplying the stoichiometric coefficients so the numbers of electrons in both half reaction match:
:20 H+ + 5 O2 + 20 e− → 10 H2O
:6 H2O + C3H8 → 3 CO2 + 20 e− + 20 H+
the balanced equation is obtained:
:C3H8 + 5 O2 → 3 CO2 + 4 H2O
Electrochemical cells
An electrochemical cell is a device that produces an electric current from energy released by a Spontaneous process, spontaneous redox reaction. This kind of cell includes the Galvanic cell or Voltaic cell, named after Luigi Galvani and Alessandro Volta
Alessandro Giuseppe Antonio Anastasio Volta (, ; 18 February 1745 – 5 March 1827) was an Italian physicist, chemist and lay Catholic who was a pioneer of electricity and power who is credited as the inventor of the electric battery and the ...
, both scientists who conducted experiments on chemical reactions and electric current during the late 18th century.
Electrochemical cells have two conductive electrodes (the anode and the cathode). The anode is defined as the electrode where oxidation occurs and the cathode
A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
is the electrode where the reduction takes place. Electrodes can be made from any sufficiently conductive materials, such as metals, semiconductors, graphite, and even conductive polymers. In between these electrodes is the electrolyte
An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dis ...
, which contains ions that can freely move.
The galvanic cell uses two different metal electrodes, each in an electrolyte where the positively charged ions are the oxidized form of the electrode metal. One electrode will undergo oxidation (the anode) and the other will undergo reduction (the cathode). The metal of the anode will oxidize, going from an oxidation state of 0 (in the solid form) to a positive oxidation state and become an ion. At the cathode, the metal ion in solution will accept one or more electrons from the cathode and the ion's oxidation state is reduced to 0. This forms a solid metal that electroplating, electrodeposits on the cathode. The two electrodes must be electrically connected to each other, allowing for a flow of electrons that leave the metal of the anode and flow through this connection to the ions at the surface of the cathode. This flow of electrons is an electric current that can be used to do work, such as turn a motor or power a light.
A galvanic cell whose electrode
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials de ...
s are zinc
Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
and copper submerged in zinc sulfate and copper sulfate, respectively, is known as a Daniell cell.[
The half reactions in a Daniell cell are as follows:][
:Zinc electrode (anode): Zn → Zn2+ + 2 e−
:Copper electrode (cathode): Cu2+ + 2 e− → Cu
In this example, the anode is the zinc metal which is oxidized (loses electrons) to form zinc ions in solution, and copper ions accept electrons from the copper metal electrode and the ions deposit at the copper cathode as an electrodeposit. This cell forms a simple battery as it will spontaneously generate a flow of electric current from the anode to the cathode through the external connection. This reaction can be driven in reverse by applying a voltage, resulting in the deposition of zinc metal at the anode and formation of copper ions at the cathode.][
To provide a complete electric circuit, there must also be an ionic conduction path between the anode and cathode electrolytes in addition to the electron conduction path. The simplest ionic conduction path is to provide a liquid junction. To avoid mixing between the two electrolytes, the liquid junction can be provided through a porous plug that allows ion flow while minimizing electrolyte mixing. To further minimize mixing of the electrolytes, a salt bridge can be used which consists of an electrolyte saturated gel in an inverted U-tube. As the negatively charged electrons flow in one direction around this circuit, the positively charged metal ions flow in the opposite direction in the electrolyte.
A galvanometer, voltmeter is capable of measuring the change of Electric potential, electrical potential between the anode and the cathode.
The electrochemical cell voltage is also referred to as ]electromotive force
In electromagnetism and electronics, electromotive force (also electromotance, abbreviated emf, denoted \mathcal or ) is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical ''transd ...
or emf.
A cell diagram can be used to trace the path of the electrons in the electrochemical cell. For example, here is a cell diagram of a Daniell cell:
:Zn , Zn2+ (1 M) , , Cu2+ (1 M) , Cu
First, the reduced form of the metal to be oxidized at the anode (Zn) is written. This is separated from its oxidized form by a vertical line, which represents the limit between the phases (oxidation changes). The double vertical lines represent the saline bridge on the cell. Finally, the oxidized form of the metal to be reduced at the cathode, is written, separated from its reduced form by the vertical line. The electrolyte concentration is given as it is an important variable in determining the exact cell potential.
Standard electrode potential
To allow prediction of the cell potential, tabulations of standard electrode potential are available. Such tabulations are referenced to the standard hydrogen electrode (SHE). The standard hydrogen electrode undergoes the reaction
:2 H+ + 2 e− → H2
which is shown as a reduction but, in fact, the SHE can act as either the anode or the cathode, depending on the relative oxidation/reduction potential of the other electrode/electrolyte combination. The term standard in SHE requires a supply of hydrogen gas bubbled through the electrolyte at a pressure of 1 atm and an acidic electrolyte with H+ activity equal to 1 (usually assumed to be [H+] = 1 mol/liter, i.e. pH = 0).
The SHE electrode can be connected to any other electrode by a salt bridge and an external circuit to form a cell. If the second electrode is also at standard conditions, then the measured cell potential is called the standard electrode potential for the electrode. The standard electrode potential for the SHE is zero, by definition. The polarity of the standard electrode potential provides information about the relative reduction potential of the electrode compared to the SHE. If the electrode has a positive potential with respect to the SHE, then that means it is a strongly reducing electrode which forces the SHE to be the anode (an example is Cu in aqueous CuSO4 with a standard electrode potential of 0.337 V). Conversely, if the measured potential is negative, the electrode is more oxidizing than the SHE (such as Zn in ZnSO4 where the standard electrode potential is −0.76 V).[Wiberg, pp. 215–216]
Standard electrode potentials are usually tabulated as reduction potentials. However, the reactions are reversible and the role of a particular electrode in a cell depends on the relative oxidation/reduction potential of both electrodes. The oxidation potential for a particular electrode is just the negative of the reduction potential. A standard cell potential can be determined by looking up the standard electrode potentials for both electrodes (sometimes called half cell potentials). The one that is smaller will be the anode and will undergo oxidation. The cell potential is then calculated as the sum of the reduction potential for the cathode and the oxidation potential for the anode.
:''E''°cell = ''E''°red (cathode) – ''E''°red (anode) = ''E''°red (cathode) + ''E''°oxi (anode)
For example, the standard electrode potential for a copper electrode is:
''Cell diagram''
:Pt , H2 (1 atm) , H+ (1 M) , , Cu2+ (1 M) , Cu
:''E''°cell = ''E''°red (cathode) – ''E''°red (anode)
At standard temperature, pressure and concentration conditions, the cell's electromotive force, emf (measured by a multimeter) is 0.34 V. By definition, the electrode potential for the SHE is zero. Thus, the Cu is the cathode and the SHE is the anode giving
:''E''cell = ''E''°(Cu2+/Cu) – ''E''°(H+/H2)
Or,
:''E''°(Cu2+/Cu) = 0.34 V
Changes in the stoichiometric coefficients of a balanced cell equation will not change the ''E''°red value because the standard electrode potential is an Intensive and extensive properties, intensive property.
Spontaneity of redox reaction
During operation of an electrochemical cell, chemical energy is transformed into electrical energy. This can be expressed mathematically as the product of the cell's emf ''E''cell measured in volts (V) and the electric charge ''Q''ele,trans transferred through the external circuit.
:Electrical energy = ''E''cell''Q''ele,trans
''Q''ele,trans is the cell current integrated over time and measured in coulombs (C); it can also be determined by multiplying the total number ''n''e of electrons transferred (measured in moles) times Faraday's constant (''F'').
The emf of the cell at zero current is the maximum possible emf. It can be used to calculate the maximum possible electrical energy that could be obtained from a chemical reaction. This energy is referred to as electrical work and is expressed by the following equation:
:,
where work is defined as positive when it increases the energy of the system.
Since the free energy is the maximum amount of work that can be extracted from a system, one can write:[Swaddle, pp. 308–314]
:
A positive cell potential gives a negative change in Gibbs free energy. This is consistent with the cell production of an electric current from the cathode to the anode through the external circuit. If the current is driven in the opposite direction by imposing an external potential, then work is done on the cell to drive electrolysis.[
A Spontaneous process, spontaneous electrochemical reaction (change in Gibbs free energy less than zero) can be used to generate an electric current in electrochemical cells. This is the basis of all batteries and ]fuel cell
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requ ...
s. For example, gaseous oxygen (O2) and
hydrogen (H2) can be combined in a fuel cell to form water and energy, typically a combination of heat and electrical energy.[
Conversely, non-spontaneous electrochemical reactions can be driven forward by the application of a current at sufficient voltage. The ]electrolysis
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
of water into gaseous oxygen and hydrogen is a typical example.
The relation between the equilibrium constant, ''K'', and the Gibbs free energy for an electrochemical cell is expressed as follows:
:.
Rearranging to express the relation between standard potential and equilibrium constant yields
:.
At ''T'' = 298 K, the previous equation can be rewritten using the Briggsian logarithm as follows:
:
Cell emf dependency on changes in concentration
Nernst equation
The standard potential of an electrochemical cell requires standard conditions (Δ''G''°) for all of the reactants. When reactant concentrations differ from standard conditions, the cell potential will deviate from the standard potential. In the 20th century German chemist
A chemist (from Greek ''chēm(ía)'' alchemy; replacing ''chymist'' from Medieval Latin ''alchemist'') is a scientist trained in the study of chemistry. Chemists study the composition of matter and its properties. Chemists carefully describe th ...
Walther Nernst proposed a mathematical model to determine the effect of reactant concentration on electrochemical cell potential.
In the late 19th century, Josiah Willard Gibbs had formulated a theory to predict whether a chemical reaction is spontaneous based on the free energy
:
Here Δ''G'' is change in Gibbs free energy, Δ''G''° is the cell potential when ''Q'' is equal to 1, ''T'' is absolute temperature (Kelvin), ''R'' is the gas constant and ''Q'' is the reaction quotient, which can be calculated by dividing concentrations of products by those of reactants, each raised to the power of its stoichiometric coefficient, using only those products and reactants that are aqueous or gaseous.
Gibbs' key contribution was to formalize the understanding of the effect of reactant concentration on spontaneity.
Based on Gibbs' work, Nernst extended the theory to include the contribution from electric potential on charged species. As shown in the previous section, the change in Gibbs free energy for an electrochemical cell can be related to the cell potential. Thus, Gibbs' theory becomes
:
Here ''ne'' is the number of electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
s (in Mole (unit), moles), ''F'' is the Faraday constant (in coulombs/Mole (unit), mole), and Δ''E'' is the Electrode potential, cell potential (in volts).
Finally, Nernst divided through by the amount of charge transferred to arrive at a new equation which now bears his name:
:
Assuming standard conditions (''T'' = 298 K or 25 °C) and Universal gas constant, ''R'' = 8.3145 J/(K·mol), the equation above can be expressed on Common logarithm, base—10 logarithm as shown below:[Wiberg, pp. 210–212]
:
Note that ' is also known as the thermal voltage ''V''T and is found in the study of plasmas and semiconductors as well. The value 0.05916 V in the above equation is just the thermal voltage at standard temperature multiplied by the natural logarithm of 10.
Concentration cells
A concentration cell is an electrochemical cell where the two electrodes are the same material, the electrolytes on the two half-cells involve the same ions, but the electrolyte concentration differs between the two half-cells.
An example is an electrochemical cell, where two copper electrodes are submerged in two copper(II) sulfate solutions, whose concentrations are 0.05 Molar concentration, M and 2.0 Molar concentration, M, connected through a salt bridge. This type of cell will generate a potential that can be predicted by the Nernst equation. Both can undergo the same chemistry (although the reaction proceeds in reverse at the anode)
:Cu2+ + 2 e− → Cu
Le Chatelier's principle indicates that the reaction is more favorable to reduction as the concentration of Cu2+ ions increases. Reduction will take place in the cell's compartment where the concentration is higher and oxidation will occur on the more dilute side.
The following cell diagram describes the concentration cell mentioned above:
:Cu , Cu2+ (0.05 M) , , Cu2+ (2.0 M) , Cu
where the half cell reactions for oxidation and reduction are:
:Oxidation: Cu → Cu2+ (0.05 M) + 2 e−
:Reduction: Cu2+ (2.0 M) + 2 e− → Cu
:Overall reaction: Cu2+ (2.0 M) → Cu2+ (0.05 M)
The cell's emf is calculated through the Nernst equation
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction ( half-cell or full cell reaction) from the standard electrode potential, absolute tempe ...
as follows:
:
The value of ''E''° in this kind of cell is zero, as electrodes and ions are the same in both half-cells.
After replacing values from the case mentioned, it is possible to calculate cell's potential:
:
or by:
:
However, this value is only approximate, as reaction quotient is defined in terms of ion activities which can be approximated with the concentrations as calculated here.
The Nernst equation plays an important role in understanding electrical effects in cells and organelles. Such effects include nerve synapses and cardiac cycle, cardiac beat as well as the resting potential of a somatic cell.
Battery
Many types of battery have been commercialized and represent an important practical application of electrochemistry. Early wet cells powered the first Electrical telegraph, telegraph and telephone systems, and were the source of current for electroplating
Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be ...
. The zinc-manganese dioxide dry cell was the first portable, non-spillable battery type that made flashlights and other portable devices practical. The mercury battery using zinc and mercuric oxide provided higher levels of power and capacity than the original dry cell for early electronic devices, but has been phased out of common use due to the danger of mercury pollution from discarded cells.
The lead–acid battery was the first practical secondary (rechargeable) battery that could have its capacity replenished from an external source. The electrochemical reaction that produced current was (to a useful degree) reversible, allowing electrical energy and chemical energy to be interchanged as needed. Common lead acid batteries contain a mixture of sulfuric acid and water, as well as lead plates. The most common mixture used today is 30% acid. One problem, however, is if left uncharged acid will crystallize within the lead plates of the battery rendering it useless. These batteries last an average of 3 years with daily use but it is not unheard of for a lead acid battery to still be functional after 7–10 years. Lead-acid cells continue to be widely used in automobiles.
All the preceding types have water-based electrolytes, which limits the maximum voltage per cell. The freezing of water limits low temperature performance. The lithium metal battery, which does not (and cannot) use water in the electrolyte, provides improved performance over other types; a rechargeable lithium-ion battery is an essential part of many mobile devices.
The flow battery, an experimental type, offers the option of vastly larger energy capacity because its reactants can be replenished from external reservoirs. The fuel cell
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requ ...
can turn the chemical energy bound in hydrocarbon gases or hydrogen and Combustion, oxygen directly into electrical energy with a much higher efficiency than any combustion process; such devices have powered many spacecraft and are being applied to grid energy storage for the public power system.
Corrosion
Corrosion is an electrochemical process, which reveals itself as rust or tarnish on metals like iron or copper and their respective alloys, steel and brass.
Iron corrosion
For iron rust to occur the metal has to be in contact with oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
and water. The chemical reactions for this process are relatively complex and not all of them are completely understood. It is believed the causes are the following:
Electron transfer (reduction-oxidation)
:One area on the surface of the metal acts as the anode, which is where the oxidation (corrosion) occurs. At the anode, the metal gives up electrons.
::Fe → Fe2+ + 2 e−
:Electrons are transferred from iron, reducing oxygen in the atmosphere into water (molecule), water on the cathode, which is placed in another region of the metal.
::O2 + 4 H+ + 4 e− → 2 H2O
:Global reaction for the process:
::2 Fe + O2 + 4 H+ → 2 Fe2+ + 2 H2O
:Standard emf for iron rusting:
::''E''° = ''E''° (cathode) − ''E''° (anode)
::''E''° = 1.23V − (−0.44 V) = 1.67 V
Iron corrosion takes place in an acid medium; hydronium, H+ ion
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
s come from reaction between carbon dioxide in the atmosphere and water, forming carbonic acid. Fe2+ ions oxidize further, following this equation:
: 4 Fe2+ + O2 + (4+2) H2O → 2 Fe2O3·H2O + 8 H+
Iron(III) oxide hydrate is known as rust. The concentration of water associated with iron oxide varies, thus the chemical formula is represented by Fe2O3·H2O.
An electric circuit is formed as passage of electrons and ions occurs; thus if an electrolyte is present it will facilitate oxidation, explaining why rusting is quicker in brine, salt water.
Corrosion of common metals
Coinage metals, such as copper and silver, slowly corrode through use.
A patina of green-blue Basic copper carbonate, copper carbonate forms on the surface of copper with exposure to the water and carbon dioxide in the air. Silver coins or cutlery that are exposed to high sulfur foods such as Egg (food), eggs or the low levels of sulfur species in the air develop a layer of black silver sulfide.
Gold and platinum are extremely difficult to oxidize under normal circumstances, and require exposure to a powerful chemical oxidizing agent such as aqua regia.
Some common metals oxidize extremely rapidly in air. Titanium and aluminium oxidize instantaneously in contact with the oxygen in the air. These metals form an extremely thin layer of oxidized metal on the surface, which bonds with the underlying metal. This thin oxide layer protects the underlying bulk of the metal from the air preventing the entire metal from oxidizing. These metals are used in applications where corrosion resistance is important. Iron, in contrast, has an oxide that forms in air and water, called rust, that does not bond with the iron and therefore does not stop the further oxidation of the iron. Thus iron left exposed to air and water will continue to rust until all of the iron is oxidized.
Prevention of corrosion
Attempts to save a metal from becoming anodic are of two general types. Anodic regions dissolve and destroy the structural integrity of the metal.
While it is almost impossible to prevent anode/cathode
A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
formation, if a Insulator (electrical), non-conducting material covers the metal, contact with the electrolyte
An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dis ...
is not possible and corrosion will not occur.
Coating
Metals can be coated with paint or other less conductive metals (''Passivation (chemistry), passivation''). This prevents the metal surface from being exposed to electrolyte
An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dis ...
s. Scratches exposing the metal substrate will result in corrosion. The region under the coating adjacent to the scratch acts as the anode of the reaction.
See Anodizing
Sacrificial anodes
A method commonly used to protect a structural metal is to attach a metal which is more anodic than the metal to be protected. This forces the structural metal to be cathodic, thus spared corrosion. It is called ''"sacrificial"'' because the anode dissolves and has to be replaced periodically.
Zinc bars are attached to various locations on steel ship Hull (watercraft), hulls to render the ship hull cathode, cathodic. The zinc bars are replaced periodically. Other metals, such as magnesium, would work very well but zinc is the least expensive useful metal.
To protect pipelines, an ingot of buried or exposed magnesium (or zinc) is buried beside the Pipe (material), pipeline and is wire, connected electrically to the pipe above ground. The pipeline is forced to be a cathode and is protected from being oxidized and rusting. The magnesium anode is sacrificed. At intervals new ingots are buried to replace those dissolved.
Electrolysis
The spontaneous redox reactions of a conventional battery produce electricity through the different reduction potentials of the cathode and anode in the electrolyte. However, electrolysis requires an external source of electrical energy to induce a chemical reaction, and this process takes place in a compartment called an electrolytic cell
An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would not otherwise occur. The external energy source is a voltage applied between the cell′s two electrod ...
.
Electrolysis of molten sodium chloride
When molten, the salt sodium chloride can be electrolyzed to yield metallic sodium
Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable iso ...
and gaseous chlorine. Industrially this process takes place in a special cell named Down's cell. The cell is connected to an electrical power supply, allowing electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
s to migrate from the power supply to the electrolytic cell.[Ebbing, pp. 800–801]
Reactions that take place in a Down's cell are the following:[
:Anode (oxidation): 2 Cl− → Cl2 + 2 e−
:Cathode (reduction): 2 Na+ + 2 e− → 2 Na
:Overall reaction: 2 Na+ + 2 Cl− → 2 Na + Cl2
This process can yield large amounts of metallic sodium and gaseous chlorine, and is widely used in mineral dressing and metallurgy Industry (economics), industries.
The Electromotive force, emf for this process is approximately −4 Volt, V indicating a (very) non-spontaneous process. In order for this reaction to occur the power supply should provide at least a potential difference of 4 V. However, larger voltages must be used for this reaction to occur at a high rate.
]
Electrolysis of water
Water can be converted to its component elemental gases, H2 and O2, through the application of an external voltage. Water does not decompose into hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
and oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
Spontaneous process, spontaneously as the Gibbs free energy change for the process at standard conditions is very positive, about 474.4 kJ. The decomposition of water into hydrogen and oxygen can be performed in an electrolytic cell. In it, a pair of inert electrode
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials de ...
s usually made of platinum immersed in water act as anode and cathode in the electrolytic process. The electrolysis starts with the application of an external voltage between the electrodes. This process will not occur except at extremely high voltages without an electrolyte such as sodium chloride or sulfuric acid (most used 0.1 Molar concentration, M).[
Bubbles from the gases will be seen near both electrodes. The following half reactions describe the process mentioned above:
:Anode (oxidation): 2 H2O → O2 + 4 H+ + 4 e−
:Cathode (reduction): 2 H2O + 2 e− → H2 + 2 OH−
:Overall reaction: 2 H2O → 2 H2 + O2
Although strong acids may be used in the apparatus, the reaction will not net consume the acid. While this reaction will work at any conductive electrode at a sufficiently large potential, platinum catalysis, catalyzes both hydrogen and oxygen formation, allowing for relatively low voltages (~2 V depending on the pH).][Wiberg, pp. 235–239]
Electrolysis of aqueous solutions
Electrolysis in an aqueous solution is a similar process as mentioned in electrolysis of water. However, it is considered to be a complex process because the contents in solution have to be analyzed in chemical reaction, half reactions, whether reduced or oxidized.
Electrolysis of a solution of sodium chloride
The presence of water in a solution of sodium chloride must be examined in respect to its reduction and oxidation in both electrodes. Usually, water is electrolysed as mentioned above in electrolysis of water yielding ''gaseous oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
in the anode'' and gaseous hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
in the cathode. On the other hand, sodium chloride in water Dissociation (chemistry), dissociates in Na+ and Cl− ions. The cation, which is the positive ion, will be attracted to the cathode (−), thus reducing the sodium
Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable iso ...
ion. The chloride anion will then be attracted to the anode (+), where it is oxidized to Chlorine, chlorine gas.[Ebbing, pp. 837–839]
The following half reactions should be considered in the process mentioned:[
# Cathode: Na+ + e− → Na''E''°red = –2.71 V
# Anode: 2 Cl− → Cl2 + 2 e−''E''°red = +1.36 V
# Cathode: 2 H2O + 2 e− → H2 + 2 OH−''E''°red = –0.83 V
# Anode: 2 H2O → O2 + 4 H+ + 4 e−''E''°red = +1.23 V
Reaction 1 is discarded as it has the most Negative number, negative value on standard reduction potential thus making it less thermodynamically favorable in the process.
When comparing the reduction potentials in reactions 2 and 4, the reduction of chloride ion is favored. Thus, if the Cl− ion is favored for redox, reduction, then the water reaction is favored for oxidation producing gaseous oxygen, however experiments show gaseous chlorine is produced and not oxygen.
Although the initial analysis is correct, there is another effect, known as the Overpotential, overvoltage effect. Additional voltage is sometimes required, beyond the voltage predicted by the ''E''°cell. This may be due to chemical kinetics, kinetic rather than Thermochemistry, thermodynamic considerations. In fact, it has been proven that the activation energy for the chloride ion is very low, hence favorable in chemical kinetics, kinetic terms. In other words, although the voltage applied is thermodynamically sufficient to drive electrolysis, the rate is so slow that to make the process proceed in a reasonable time frame, the voltage of the external source has to be increased (hence, overvoltage).][
Finally, reaction 3 is favorable because it describes the proliferation of hydroxide, OH− ions thus letting a probable reduction of hydronium, H+ ions less favorable an option.
The overall reaction for the process according to the analysis is the following:][
:Anode (oxidation): 2 Cl− → Cl2 + 2 e−
:Cathode (reduction): 2 H2O + 2 e− → H2 + 2 OH−
:Overall reaction: 2 H2O + 2 Cl− → H2 + Cl2 + 2 OH−
As the overall reaction indicates, the concentration of chloride ions is reduced in comparison to OH− ions (whose concentration increases). The reaction also shows the production of gaseous ]hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
, chlorine and aqueous sodium hydroxide.
Quantitative electrolysis and Faraday's laws
Quantitative aspects of electrolysis were originally developed by Michael Faraday
Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
in 1834. Faraday is also credited to have coined the terms ''electrolyte
An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dis ...
'', electrolysis, among many others while he studied quantitative analysis of electrochemical reactions. Also he was an advocate of the law of conservation of energy.
First law
Faraday concluded after several experiments on electric current in a spontaneous process, non-spontaneous process that the mass of the products yielded on the electrodes was proportional to the value of current supplied to the cell, the length of time the current existed, and the molar mass of the substance analyzed. In other words, the amount of a substance deposited on each electrode of an electrolytic cell is directly proportional to the Electric charge, quantity of electricity passed through the cell.
Below is a simplified equation of Faraday's first law:
:
where
:''m'' is the mass of the substance produced at the electrode (in grams),
:''Q'' is the total electric charge that passed through the solution (in coulombs),
:''n'' is the valence number of the substance as an ion in solution (electrons per ion),
:''M'' is the molar mass of the substance (in grams per mole (unit), mole).
Second law
Faraday devised the laws of chemical electrodeposition of metals from solutions in 1857. He formulated the second law of electrolysis stating ''"the amounts of bodies which are equivalent to each other in their ordinary chemical action have equal quantities of electricity naturally associated with them."'' In other words, the quantities of different elements deposited by a given amount of electricity are in the ratio of their chemical equivalent weights.
An important aspect of the second law of electrolysis is electroplating
Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be ...
, which together with the first law of electrolysis has a significant number of applications in industry, as when used to protectively coat metals to avoid corrosion.
Applications
There are various important electrochemical processes in both nature and industry, like the coating of objects with metals or metal oxides through electrodeposition, the addition (electroplating
Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be ...
) or removal (electropolishing) of thin layers of metal from an object's surface, and the detection of alcohol in drunk drivers through the redox reaction of ethanol. The generation of chemical energy through photosynthesis is inherently an electrochemical process, as is production of metals like aluminum and titanium from their ores. Certain diabetes blood sugar meters measure the amount of glucose in the blood through its redox potential. In addition to established electrochemical technologies (like deep cycle lead acid batteries) there is also a wide range of new emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors and super-capacitors that are becoming increasingly commercial. Electrochemical or coulometric titrations were introduced for quantitative analysis of minute quantities in 1938 by the Hungarian chemists László Szebellédy and Zoltan Somogyi. Electrochemistry also has important applications in the food industry, like the assessment of food/package interactions, the analysis of milk composition, the characterization and the determination of the freezing end-point of Ice cream, ice-cream mixes, or the determination of free acidity in olive oil.
See also
*Bioelectromagnetism
*Bioelectrochemistry
*Bipolar electrochemistry
*Contact tension – a historical forerunner to the theory of electrochemistry.
*Corrosion engineering
*Cyclic Voltammetry
*Electrochemical impedance spectroscopy
*Electroanalytical methods
*Electrocatalyst
*Electrochemical potential
*Electrochemiluminescence
*Electrodeionization
*Electropolishing
*Electroplating
*Electrochemical engineering
*Electrochemical energy conversion
*Electrosynthesis
*Frost diagram
*Fuel cells
*ITIES
*List of electrochemists
*List of important publications in chemistry#Electrochemistry, Important publications in electrochemistry
*Magnetoelectrochemistry
*Nanoelectrochemistry
*Photoelectrochemistry
*Plasma electrochemistry
*Pourbaix diagram
*Protein film voltammetry
*Reactivity series
*Redox titration
*Standard electrode potential (data page)
*Voltammetry
References
Bibliography
*Ebbing, Darrell D. and Gammon, Steven D
General Chemistry
(2007) ,
Nobel Lectures in Chemistry
Volume 1, World Scientific (1999)
*Swaddle, Thomas Wilso
Inorganic chemistry: an industrial and environmental perspective
Academic Press (1997)
*Brett CMA, Brett AMO, ELECTROCHEMISTRY, Principles, methods, and applications, Oxford University Press, (1993)
*Wiberg, Egon; Wiberg, Nils and Holleman, Arnold Frederic
Inorganic chemistry
Academic Press (2001)
External links
*
*
{{Use dmy dates, date=March 2017
Electrochemistry,
Physical chemistry