__NOTOC__
In
geology
Geology () is a branch of natural science concerned with Earth and other astronomical objects, the features or rocks of which it is composed, and the processes by which they change over time. Modern geology significantly overlaps all other Ea ...
, the elastic-rebound theory is an explanation for how
energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
is released during an
earthquake
An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, fr ...
.
As the Earth's
crust deforms, the rocks which span the opposing sides of a
fault are subjected to
shear stress
Shear stress, often denoted by (Greek: tau), is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. ''Normal stress'', on the ...
. Slowly they
deform
Deformation can refer to:
* Deformation (engineering), changes in an object's shape or form due to the application of a force or forces.
** Deformation (physics), such changes considered and analyzed as displacements of continuum bodies.
* De ...
, until their internal rigidity is exceeded. Then they
separate with a rupture along the fault; the sudden movement releases
accumulated energy, and the rocks snap back almost to their original shape. The previously solid mass is divided between the two slowly moving plates, the energy released through the surroundings in a
seismic wave
A seismic wave is a wave of acoustic energy that travels through the Earth. It can result from an earthquake, volcanic eruption, magma movement, a large landslide, and a large man-made explosion that produces low-frequency acoustic energy ...
.
Theory
After the great
1906 San Francisco earthquake, geophysicist
Harry Fielding Reid
Harry Fielding Reid (May 18, 1859 – June 18, 1944) was an American geophysicist. He was notable for his contributions to seismology, particularly his theory of elastic rebound that related faults to earthquakes.
Early life
Harry Fielding Reid ...
examined the displacement of the ground surface along the
San Andreas Fault
The San Andreas Fault is a continental transform fault that extends roughly through California. It forms the tectonic boundary between the Pacific Plate and the North American Plate, and its motion is right-lateral strike-slip (horizonta ...
in the 50 years before the earthquake.
[Reid, H.F., ''The Mechanics of the Earthquake, The California Earthquake of April 18, 1906; Report of the State Investigation Commission,'' Vol.2, Carnegie Institution of Washington, Washington, D.C. 1910] He found evidence for 3.2 m of bending during that period.
He concluded that the quake must have been the result of the elastic rebound of the
strain
Strain may refer to:
Science and technology
* Strain (biology), variants of plants, viruses or bacteria; or an inbred animal used for experimental purposes
* Strain (chemistry), a chemical stress of a molecule
* Strain (injury), an injury to a mu ...
energy stored in the rocks on either side of the fault. Later measurements using the
global positioning system
The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite sy ...
largely support Reid's theory as the basis of seismic movement.
Explanation
The two sides of an active but locked fault are slowly moving in different directions, where elastic strain energy builds up in any rock mass that adjoins them. Thus, if a road is built straight across the fault as in Time 1 of the figure panel, it is perpendicular to the
fault trace
A fault trace describes the intersection of a geological fault with the Earth's surface, which leaves a visible disturbance on the surface, usually looking like a crack in the surface with jagged rock structures protruding outward. The term also ...
at point E, where the fault is locked. The overall fault movement (large arrows) causes the rocks across the locked fault to accrue
elastic deformation
In engineering, deformation refers to the change in size or shape of an object. ''Displacements'' are the ''absolute'' change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain ...
, as in Time 2. This deformation may build at the rate of a few centimeters per year. When the accumulated
strain
Strain may refer to:
Science and technology
* Strain (biology), variants of plants, viruses or bacteria; or an inbred animal used for experimental purposes
* Strain (chemistry), a chemical stress of a molecule
* Strain (injury), an injury to a mu ...
is great enough to overcome the
strength
Strength may refer to:
Physical strength
*Physical strength, as in people or animals
* Hysterical strength, extreme strength occurring when people are in life-and-death situations
*Superhuman strength, great physical strength far above human c ...
of the rocks, the result is a sudden break, or a springing back to the original shape as much as possible, a jolt which is felt on the surface as an earthquake. This sudden movement results in the shift of the roadway's surface, as shown in Time 3. The stored energy is released partly as heat, partly in alteration of the rock, and partly as a
seismic wave
A seismic wave is a wave of acoustic energy that travels through the Earth. It can result from an earthquake, volcanic eruption, magma movement, a large landslide, and a large man-made explosion that produces low-frequency acoustic energy ...
.
References
{{reflist
External links
* https://earthquake.usgs.gov/earthquakes/events/1906calif/18april/reid.php
Plate tectonics
1906 San Francisco earthquake
Seismology