In the
general theory of relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the differential geometry, geometric scientific theory, theory of gravitation published by Albert Einstein in 1915 and is the current descr ...
, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of
spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
to the distribution of
matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
within it.
The equations were published by Einstein in 1915 in the form of a
tensor equation which related the local ' (expressed by the
Einstein tensor
In differential geometry, the Einstein tensor (named after Albert Einstein; also known as the trace-reversed Ricci tensor) is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field eq ...
) with the local energy,
momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
and stress within that spacetime (expressed by the
stress–energy tensor
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress ...
).
Analogously to the way that
electromagnetic field
An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
s are related to the distribution of
charge
Charge or charged may refer to:
Arts, entertainment, and media Films
* '' Charge, Zero Emissions/Maximum Speed'', a 2011 documentary
Music
* ''Charge'' (David Ford album)
* ''Charge'' (Machel Montano album)
* ''Charge!!'', an album by The Aqu ...
s and
current
Currents, Current or The Current may refer to:
Science and technology
* Current (fluid), the flow of a liquid or a gas
** Air current, a flow of air
** Ocean current, a current in the ocean
*** Rip current, a kind of water current
** Current (stre ...
s via
Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.
...
, the EFE relate the
spacetime geometry
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
to the distribution of mass–energy, momentum and stress, that is, they determine the
metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
of spacetime for a given arrangement of stress–energy–momentum in the spacetime. The relationship between the metric tensor and the Einstein tensor allows the EFE to be written as a set of nonlinear
partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function.
The function is often thought of as an "unknown" to be sol ...
s when used in this way. The solutions of the EFE are the components of the metric tensor. The
inertia
Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
l trajectories of particles and radiation (
geodesics
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
) in the resulting geometry are then calculated using the
geodesic equation
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection ...
.
As well as implying local energy–momentum conservation, the EFE reduce to
Newton's law of gravitation
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distanc ...
in the limit of a weak gravitational field and velocities that are much less than the
speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
.
Exact solutions for the EFE can only be found under simplifying assumptions such as
symmetry
Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
. Special classes of
exact solutions
In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first i ...
are most often studied since they model many gravitational phenomena, such as
rotating black hole
A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry.
All celestial objects – planets, stars (Sun), galaxies, black holes – spin.
Types of black holes
Ther ...
s and the
expanding universe
The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
. Further simplification is achieved in approximating the spacetime as having only small deviations from
flat spacetime
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
, leading to the
linearized EFE. These equations are used to study phenomena such as
gravitational waves
Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that Wave propagation, propagate as waves outward from their source at the speed of light. They were first proposed by Oliv ...
.
Mathematical form
The Einstein field equations (EFE) may be written in the form:
:
where is the
Einstein tensor
In differential geometry, the Einstein tensor (named after Albert Einstein; also known as the trace-reversed Ricci tensor) is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field eq ...
,
is the
metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
, is the
stress–energy tensor
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress ...
, is the
cosmological constant
In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant,
is the constant coefficient of a term that Albert Einstein temporarily added to his field equ ...
and is the Einstein gravitational constant.
The
Einstein tensor
In differential geometry, the Einstein tensor (named after Albert Einstein; also known as the trace-reversed Ricci tensor) is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field eq ...
is defined as
:
where is the
Ricci curvature tensor
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measur ...
, and is the
scalar curvature
In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
. This is a symmetric second-degree tensor that depends on only the metric tensor and its first and second derivatives.
The Einstein gravitational constant is defined as
:
where is the
Newtonian constant of gravitation
The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in th ...
and is the
speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
in vacuum.
The EFE can thus also be written as
:
In standard units, each term on the left has units of 1/length
2.
The expression on the left represents the curvature of spacetime as determined by the metric; the expression on the right represents the stress–energy–momentum content of spacetime. The EFE can then be interpreted as a set of equations dictating how stress–energy–momentum determines the curvature of spacetime.
These equations, together with the
geodesic equation
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection ...
,
which dictates how freely falling matter moves through spacetime, form the core of the
mathematical formulation of
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
.
The EFE is a tensor equation relating a set of
symmetric 4 × 4 tensors. Each tensor has 10 independent components. The four
Bianchi identities In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case.
Definition
Let ''G'' be a Lie group with Lie alge ...
reduce the number of independent equations from 10 to 6, leaving the metric with four
gauge-fixing
In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct co ...
degrees of freedom
Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or ...
, which correspond to the freedom to choose a coordinate system.
Although the Einstein field equations were initially formulated in the context of a four-dimensional theory, some theorists have explored their consequences in dimensions.
The equations in contexts outside of general relativity are still referred to as the Einstein field equations. The vacuum field equations (obtained when is everywhere zero) define
Einstein manifold
In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition i ...
s.
The equations are more complex than they appear. Given a specified distribution of matter and energy in the form of a stress–energy tensor, the EFE are understood to be equations for the metric tensor
, since both the Ricci tensor and scalar curvature depend on the metric in a complicated nonlinear manner. When fully written out, the EFE are a system of ten coupled, nonlinear, hyperbolic-elliptic
partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function.
The function is often thought of as an "unknown" to be sol ...
s.
Sign convention
The above form of the EFE is the standard established by
Misner, Thorne, and Wheeler (MTW). The authors analyzed conventions that exist and classified these according to three signs (
1 2 3:
The third sign above is related to the choice of convention for the Ricci tensor:
With these definitions
Misner, Thorne, and Wheeler classify themselves as , whereas Weinberg (1972) is , Peebles (1980) and Efstathiou et al. (1990) are , Rindler (1977), Atwater (1974), Collins Martin & Squires (1989) and Peacock (1999) are .
Authors including Einstein have used a different sign in their definition for the Ricci tensor which results in the sign of the constant on the right side being negative:
The sign of the cosmological term would change in both these versions if the metric
sign convention
In physics, a sign convention is a choice of the physical significance of signs (plus or minus) for a set of quantities, in a case where the choice of sign is arbitrary. "Arbitrary" here means that the same physical system can be correctly describ ...
is used rather than the MTW metric sign convention adopted here.
Equivalent formulations
Taking the
trace with respect to the metric of both sides of the EFE one gets
where is the spacetime dimension. Solving for and substituting this in the original EFE, one gets the following equivalent "trace-reversed" form:
In dimensions this reduces to
Reversing the trace again would restore the original EFE. The trace-reversed form may be more convenient in some cases (for example, when one is interested in weak-field limit and can replace
in the expression on the right with the
Minkowski metric
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of Three-dimensional space, three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two Event (rel ...
without significant loss of accuracy).
The cosmological constant
In the Einstein field equations
the term containing the
cosmological constant
In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant,
is the constant coefficient of a term that Albert Einstein temporarily added to his field equ ...
was absent from the version in which he originally published them. Einstein then included the term with the cosmological constant to allow for a
universe that is not expanding or contracting. This effort was unsuccessful because:
* any desired steady state solution described by this equation is unstable, and
* observations by
Edwin Hubble
Edwin Powell Hubble (November 20, 1889 – September 28, 1953) was an Americans, American astronomer. He played a crucial role in establishing the fields of extragalactic astronomy and observational cosmology.
Hubble proved that many objects ...
showed that our universe is
expanding.
Einstein then abandoned , remarking to
George Gamow
George Gamow (March 4, 1904 – August 19, 1968), born Georgiy Antonovich Gamov ( uk, Георгій Антонович Гамов, russian: Георгий Антонович Гамов), was a Russian-born Soviet and American polymath, theoreti ...
"that the introduction of the cosmological term was the biggest blunder of his life".
The inclusion of this term does not create inconsistencies. For many years the cosmological constant was almost universally assumed to be zero. More recent
astronomical
Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxies ...
observations have shown an
accelerating expansion of the universe
Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered durin ...
, and to explain this a positive value of is needed.
[
] The cosmological constant is negligible at the scale of a galaxy or smaller.
Einstein thought of the cosmological constant as an independent parameter, but its term in the field equation can also be moved algebraically to the other side and incorporated as part of the stress–energy tensor:
This tensor describes a
vacuum state
In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The word zero-point field is sometimes used as ...
with an
energy density
In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or .
Often only the ''useful'' or extract ...
and isotropic pressure that are fixed constants and given by
where it is assumed that has SI unit m and is defined as above.
The existence of a cosmological constant is thus equivalent to the existence of a vacuum energy and a pressure of opposite sign. This has led to the terms "cosmological constant" and "vacuum energy" being used interchangeably in general relativity.
Features
Conservation of energy and momentum
General relativity is consistent with the local conservation of energy and momentum expressed as
which expresses the local conservation of stress–energy. This conservation law is a physical requirement. With his field equations Einstein ensured that general relativity is consistent with this conservation condition.
Nonlinearity
The nonlinearity of the EFE distinguishes general relativity from many other fundamental physical theories. For example,
Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.
...
of
electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
are linear in the
electric
Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by ...
and
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s, and charge and current distributions (i.e. the sum of two solutions is also a solution); another example is
Schrödinger's equation of
quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, which is linear in the
wavefunction
A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements mad ...
.
The correspondence principle
The EFE reduce to
Newton's law of gravity
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distan ...
by using both the
weak-field approximation
In the theory of general relativity, linearized gravity is the application of perturbation theory to the Metric tensor (general relativity), metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effect ...
and the
slow-motion approximation
The classical limit or correspondence limit is the ability of a physical theory to approximate or "recover" classical mechanics when considered over special values of its parameters. The classical limit is used with physical theories that predict n ...
. In fact, the constant appearing in the EFE is determined by making these two approximations.
Vacuum field equations
If the energy–momentum tensor is zero in the region under consideration, then the field equations are also referred to as the
vacuum field equations. By setting in the
trace-reversed field equations, the vacuum equations can be written as
In the case of nonzero cosmological constant, the equations are
The solutions to the vacuum field equations are called
vacuum solutions. Flat
Minkowski space
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inerti ...
is the simplest example of a vacuum solution. Nontrivial examples include the
Schwarzschild solution
In Einstein's theory of general relativity, the Schwarzschild metric (also known as the Schwarzschild solution) is an
exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumpti ...
and the
Kerr solution
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of gene ...
.
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
s with a vanishing
Ricci tensor
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measur ...
, , are referred to as
Ricci-flat manifold In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are ...
s and manifolds with a Ricci tensor proportional to the metric as
Einstein manifold
In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition i ...
s.
Einstein–Maxwell equations
If the energy–momentum tensor is that of an
electromagnetic field
An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
in
free space
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
, i.e. if the
electromagnetic stress–energy tensor
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electrom ...
is used, then the Einstein field equations are called the ''Einstein–Maxwell equations'' (with
cosmological constant
In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant,
is the constant coefficient of a term that Albert Einstein temporarily added to his field equ ...
, taken to be zero in conventional relativity theory):
Additionally, the
covariant Maxwell equations are also applicable in free space:
where the semicolon represents a
covariant derivative
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a different ...
, and the brackets denote
anti-symmetrization. The first equation asserts that the 4-
divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the ...
of the
2-form
In mathematics, differential forms provide a unified approach to define integrand