In
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a
polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
(for example, a
polygon
In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain.
The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon ...
or a
polyhedron
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer ...
) or a
tiling is isotoxal () or edge-transitive if its
symmetries
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
act
transitively on its
edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a
translation
Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
,
rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
, and/or
reflection that will move one edge to the other while leaving the region occupied by the object unchanged.
Isotoxal polygons
An isotoxal polygon is an even-sided i.e.
equilateral polygon
In geometry, an equilateral polygon is a polygon which has all sides of the same length. Except in the triangle case, an equilateral polygon does not need to also be equiangular (have all angles equal), but if it does then it is a regular polygon ...
, but not all equilateral polygons are isotoxal. The
duals
''Duals'' is a compilation album by the Irish rock band U2. It was released in April 2011 to u2.com subscribers.
Track listing
:* "Where the Streets Have No Name" and "Amazing Grace" are studio mix of U2's performance at the Rose Bowl, ...
of isotoxal polygons are
isogonal polygons. Isotoxal
-gons are
centrally symmetric
In geometry, a point reflection (also called a point inversion or central inversion) is a geometric transformation of affine space in which every point is reflected across a designated inversion center, which remains fixed. In Euclidean or ...
, thus are also
zonogons.
In general, a (non-regular) isotoxal
-gon has
dihedral symmetry
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, g ...
. For example, a (non-square)
rhombus
In plane Euclidean geometry, a rhombus (: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhom ...
is an isotoxal "
×
-gon" (quadrilateral) with
symmetry. All
regular -gons (also with odd
) are isotoxal, having double the minimum symmetry order: a regular
-gon has
dihedral symmetry.
An isotoxal
-gon with outer internal angle
can be denoted by
The inner internal angle
may be less or greater than
making convex or concave polygons respectively.
A
star -gon can also be isotoxal, denoted by
with
and with the
greatest common divisor
In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers , , the greatest co ...
where
is the
turning number
In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that the curve travels counterclockwise around the point, i.e., the curve's number o ...
or
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
.
['']Tilings and patterns
''Tilings and patterns'' is a book by mathematicians Branko Grünbaum and Geoffrey Colin Shephard published in 1987 by W.H. Freeman. The book was 10 years in development, and upon publication it was widely reviewed and highly acclaimed.
Structu ...
'', Branko Gruenbaum, G. C. Shephard, 1987, 2.5 Tilings using star polygons, pp. 82–85. Concave inner vertices can be defined for
If
then
is "reduced" to a compound
of
rotated copies of
Caution:
: The vertices of
are not always placed like those of
whereas the vertices of the regular
are placed like those of the regular
A set of
"uniform" tilings, actually
isogonal tilings using isotoxal polygons as less symmetric faces than regular ones, can be defined.
Isotoxal polyhedra and tilings
Regular polyhedra
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different eq ...
are isohedral (face-transitive), isogonal (vertex-transitive), and isotoxal (edge-transitive).
Quasiregular polyhedra, like the
cuboctahedron
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertex (geometry), vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edge (geometry), edges, each separating a tr ...
and the
icosidodecahedron
In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (''icosi-'') triangular faces and twelve (''dodeca-'') pentagonal faces. An icosidodecahedron has 30 identical Vertex (geometry), vertices, with two triang ...
, are isogonal and isotoxal, but not isohedral. Their duals, including the
rhombic dodecahedron
In geometry, the rhombic dodecahedron is a Polyhedron#Convex_polyhedra, convex polyhedron with 12 congruence (geometry), congruent rhombus, rhombic face (geometry), faces. It has 24 edge (geometry), edges, and 14 vertex (geometry), vertices of 2 ...
and the
rhombic triacontahedron
The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombus, rhombic face (geometry), faces. It has 60 edge (geometry), edges and 32 vertex ...
, are isohedral and isotoxal, but not isogonal.
Not every
polyhedron
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer ...
or 2-dimensional
tessellation
A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety ...
constructed from
regular polygons
In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either ''convex ...
is isotoxal. For instance, the
truncated icosahedron
In geometry, the truncated icosahedron is a polyhedron that can be constructed by Truncation (geometry), truncating all of the regular icosahedron's vertices. Intuitively, it may be regarded as Ball (association football), footballs (or soccer ...
(the familiar soccerball) is not isotoxal, as it has two edge types: hexagon-hexagon and hexagon-pentagon, and it is not possible for a symmetry of the solid to move a hexagon-hexagon edge onto a hexagon-pentagon edge.
An isotoxal polyhedron has the same
dihedral angle for all edges.
The dual of a convex polyhedron is also a convex polyhedron.
The dual of a non-convex polyhedron is also a non-convex polyhedron.
(By contraposition.)
The dual of an isotoxal polyhedron is also an isotoxal polyhedron. (See the
Dual polyhedron
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other ...
article.)
There are nine
convex
Convex or convexity may refer to:
Science and technology
* Convex lens, in optics
Mathematics
* Convex set, containing the whole line segment that joins points
** Convex polygon, a polygon which encloses a convex set of points
** Convex polytop ...
isotoxal polyhedra: the five (
regular)
Platonic solid
In geometry, a Platonic solid is a Convex polytope, convex, regular polyhedron in three-dimensional space, three-dimensional Euclidean space. Being a regular polyhedron means that the face (geometry), faces are congruence (geometry), congruent (id ...
s, the two (
quasiregular) common cores of dual Platonic solids, and their two duals.
There are fourteen non-convex isotoxal polyhedra: the four (regular)
Kepler–Poinsot polyhedra, the two (quasiregular) common cores of dual Kepler–Poinsot polyhedra, and their two duals, plus the three quasiregular ditrigonal (3 , ''p q'') star polyhedra, and their three duals.
There are at least five isotoxal polyhedral compounds: the five
regular polyhedral compounds; their five duals are also the five regular polyhedral compounds (or one chiral twin).
There are at least five isotoxal polygonal tilings of the Euclidean plane, and infinitely many isotoxal polygonal tilings of the hyperbolic plane, including the Wythoff constructions from the
regular hyperbolic tilings , and non-right (''p q r'') groups.
See also
*
Table of polyhedron dihedral angles
*
Vertex-transitive
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face i ...
*
Face-transitive
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its Face (geometry), faces are the same. More specifically, all faces must be not ...
*
Cell-transitive
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruen ...
References
* Peter R. Cromwell, ''
Polyhedra
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary su ...
'', Cambridge University Press, 1997, , Transitivity, p. 371
* (6.4 Isotoxal tilings, pp. 309–321)
*
{{polygons
Polyhedra
4-polytopes