Eclipse Public License 2
   HOME

TheInfoList



OR:

An eclipse is an
astronomical event ''Astronomical events are events such as eclipses or novae that astronomy studies, whereas "astronomy events" refers to events such as meetings, conferences and other such newsworthy occasions relating to astronomy.'' {{Commons cat, Astronomica ...
that occurs when an
astronomical object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often us ...
or spacecraft is temporarily obscured, by passing into the shadow of another body or by having another body pass between it and the viewer. This alignment of three celestial objects is known as a syzygy. Apart from syzygy, the term eclipse is also used when a spacecraft reaches a position where it can observe two celestial bodies so aligned. An eclipse is the result of either an occultation (completely hidden) or a transit (partially hidden). The term eclipse is most often used to describe either a
solar eclipse A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of the Earth, totally or partially. Such an alignment occurs during an eclipse season, approximately every six month ...
, when the Moon's shadow crosses the Earth's surface, or a
lunar eclipse A lunar eclipse occurs when the Moon moves into the Earth's shadow. Such alignment occurs during an eclipse season, approximately every six months, during the full moon phase, when the Moon's orbital plane is closest to the plane of the Earth ...
, when the Moon moves into the Earth's shadow. However, it can also refer to such events beyond the Earth–Moon system: for example, a planet moving into the shadow cast by one of its moons, a moon passing into the shadow cast by its host planet, or a moon passing into the shadow of another moon. A
binary star A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in wh ...
system can also produce eclipses if the plane of the orbit of its constituent stars intersects the observer's position. For the special cases of solar and lunar eclipses, these only happen during an " eclipse season", the two times of each year when the plane of the Earth's orbit around the Sun crosses with the plane of the Moon's orbit around the Earth and the line defined by the intersecting planes points near the Sun. The type of solar eclipse that happens during each season (whether total, annular, hybrid, or partial) depends on apparent sizes of the Sun and Moon. If the orbit of the Earth around the Sun and the Moon's orbit around the Earth were both in the same plane with each other, then eclipses would happen each and every month. There would be a lunar eclipse at every full moon, and a solar eclipse at every new moon. And if both orbits were perfectly circular, then each solar eclipse would be the same type every month. It is because of the non-planar and non-circular differences that eclipses are not a common event. Lunar eclipses can be viewed from the entire nightside half of the Earth. But solar eclipses, particularly total eclipses occurring at any one particular point on the Earth's surface, are very rare events that can be many decades apart.


Etymology

The term is derived from the ancient Greek noun ('), which means "the abandonment", "the downfall", or "the darkening of a heavenly body", which is derived from the verb (') which means "to abandon", "to darken", or "to cease to exist," a combination of prefix ('), from preposition ('), "out," and of verb ('), "to be absent".


Umbra, penumbra and antumbra

For any two objects in space, a line can be extended from the first through the second. The latter object will block some amount of light being emitted by the former, creating a region of shadow around the axis of the line. Typically these objects are moving with respect to each other and their surroundings, so the resulting shadow will sweep through a region of space, only passing through any particular location in the region for a fixed interval of time. As viewed from such a location, this shadowing event is known as an eclipse. Typically the cross-section of the objects involved in an astronomical eclipse is roughly disk-shaped. The region of an object's shadow during an eclipse is divided into three parts: * The ''umbra'' (Latin for "shadow"), within which the object completely covers the light source. For the Sun, this light source is the photosphere. * The ''antumbra'' (from Latin ''ante'', "before, in front of", plus ''umbra'') extending beyond the tip of the umbra, within which the object is completely in front of the light source but too small to completely cover it. * The ''penumbra'' (from the Latin ''paene'', "almost, nearly", plus ''umbra''), within which the object is only partially in front of the light source. A total eclipse occurs when the observer is within the umbra, an annular eclipse when the observer is within the antumbra, and a partial eclipse when the observer is within the penumbra. During a lunar eclipse only the umbra and penumbra are applicable, because the antumbra of the Sun-Earth system lies far beyond the Moon. Analogously, Earth's apparent diameter from the viewpoint of the Moon is nearly four times that of the Sun and thus cannot produce an annular eclipse. The same terms may be used analogously in describing other eclipses, e.g., the antumbra of
Deimos Deimos, a Greek word for ''dread'', may refer to: * Deimos (deity), one of the sons of Ares and Aphrodite in Greek mythology * Deimos (moon), the smaller and outermost of Mars' two natural satellites * Elecnor Deimos, a Spanish aerospace company * ...
crossing Mars, or Phobos entering Mars's penumbra. The ''first contact'' occurs when the eclipsing object's disc first starts to impinge on the light source; ''second contact'' is when the disc moves completely within the light source; ''third contact'' when it starts to move out of the light; and ''fourth'' or ''last contact'' when it finally leaves the light source's disc entirely. For spherical bodies, when the occulting object is smaller than the star, the length (''L'') of the umbra's cone-shaped shadow is given by: :L\ =\ \frac where ''Rs'' is the radius of the star, ''Ro'' is the occulting object's radius, and ''r'' is the distance from the star to the occulting object. For Earth, on average ''L'' is equal to 1.384  km, which is much larger than the Moon's semimajor axis of 3.844 km. Hence the umbral cone of the Earth can completely envelop the Moon during a
lunar eclipse A lunar eclipse occurs when the Moon moves into the Earth's shadow. Such alignment occurs during an eclipse season, approximately every six months, during the full moon phase, when the Moon's orbital plane is closest to the plane of the Earth ...
. If the occulting object has an atmosphere, however, some of the luminosity of the star can be refracted into the volume of the umbra. This occurs, for example, during an eclipse of the Moon by the Earth—producing a faint, ruddy illumination of the Moon even at totality. On Earth, the shadow cast during an eclipse moves very approximately at 1 km per sec. This depends on the location of the shadow on the Earth and the angle in which it is moving.


Eclipse cycles

An eclipse cycle takes place when eclipses in a series are separated by a certain interval of time. This happens when the orbital motions of the bodies form repeating harmonic patterns. A particular instance is the saros, which results in a repetition of a solar or lunar eclipse every 6,585.3 days, or a little over 18 years. Because this is not a whole number of days, successive eclipses will be visible from different parts of the world. In one saros period there are 239.0 anomalistic periods, 241.0 sidereal periods, 242.0 nodical periods, and 223.0 synodic periods. Although the orbit of the Moon does not give exact integers, the numbers of orbit cycles are close enough to integers to give strong similarity for eclipses spaced at 18.03 yr intervals.


Earth–Moon system

An eclipse involving the Sun, Earth, and Moon can occur only when they are nearly in a straight line, allowing one to be hidden behind another, viewed from the third. Because the orbital plane of the Moon is tilted with respect to the orbital plane of the Earth (the ecliptic), eclipses can occur only when the Moon is close to the intersection of these two planes (the nodes). The Sun, Earth and nodes are aligned twice a year (during an eclipse season), and eclipses can occur during a period of about two months around these times. There can be from four to seven eclipses in a calendar year, which repeat according to various eclipse cycles, such as a saros. Between 1901 and 2100 there are the maximum of seven eclipses in: * four (penumbral) lunar and three solar eclipses: 1908,
2038 The 2030s (pronounced "twenty-thirties"; shortened to the '30s) is the next decade in the Gregorian calendar that will begin on 1 January 2030, and will end on 31 December 2039. Plans and goals * NASA plans to execute a crewed mission to Mars be ...
. * four solar and three lunar eclipses: 1918,
1973 Events January * January 1 - The United Kingdom, the Republic of Ireland and Denmark enter the European Economic Community, which later becomes the European Union. * January 15 – Vietnam War: Citing progress in peace negotiations, U.S. ...
, 2094. * five solar and two lunar eclipses: 1934. Excluding penumbral lunar eclipses, there are a maximum of seven eclipses in: * 1591, 1656, 1787, 1805, 1918, 1935, 1982, and 2094.


Solar eclipse

As observed from the Earth, a
solar eclipse A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of the Earth, totally or partially. Such an alignment occurs during an eclipse season, approximately every six month ...
occurs when the Moon passes in front of the Sun. The type of solar eclipse event depends on the distance of the Moon from the Earth during the event. A total solar eclipse occurs when the Earth intersects the umbra portion of the Moon's shadow. When the umbra does not reach the surface of the Earth, the Sun is only partially occulted, resulting in an annular eclipse. Partial solar eclipses occur when the viewer is inside the penumbra. The eclipse magnitude is the fraction of the Sun's diameter that is covered by the Moon. For a total eclipse, this value is always greater than or equal to one. In both annular and total eclipses, the eclipse magnitude is the ratio of the angular sizes of the Moon to the Sun. Solar eclipses are relatively brief events that can only be viewed in totality along a relatively narrow track. Under the most favorable circumstances, a total solar eclipse can last for 7 minutes, 31 seconds, and can be viewed along a track that is up to 250 km wide. However, the region where a partial eclipse can be observed is much larger. The Moon's umbra will advance eastward at a rate of 1,700 km/h, until it no longer intersects the Earth's surface. During a solar eclipse, the Moon can sometimes perfectly cover the Sun because its apparent size is nearly the same as the Sun's when viewed from the Earth. A total solar eclipse is in fact an occultation while an annular solar eclipse is a transit. When observed at points in space other than from the Earth's surface, the Sun can be eclipsed by bodies other than the Moon. Two examples include when the crew of
Apollo 12 Apollo 12 (November 14–24, 1969) was the sixth crewed flight in the United States Apollo program and the second to land on the Moon. It was launched on November 14, 1969, by NASA from the Kennedy Space Center, Florida. Commander Pete Conra ...
observed the Earth to eclipse the Sun in 1969 and when the '' Cassini'' probe observed Saturn to eclipse the Sun in 2006.


Lunar eclipse

Lunar eclipses occur when the Moon passes through the Earth's shadow. This happens only during a full moon, when the Moon is on the far side of the Earth from the Sun. Unlike a solar eclipse, an eclipse of the Moon can be observed from nearly an entire hemisphere. For this reason it is much more common to observe a lunar eclipse from a given location. A lunar eclipse lasts longer, taking several hours to complete, with totality itself usually averaging anywhere from about 30 minutes to over an hour. There are three types of lunar eclipses: penumbral, when the Moon crosses only the Earth's penumbra; partial, when the Moon crosses partially into the Earth's umbra; and total, when the Moon crosses entirely into the Earth's umbra. Total lunar eclipses pass through all three phases. Even during a total lunar eclipse, however, the Moon is not completely dark. Sunlight refracted through the Earth's atmosphere enters the umbra and provides a faint illumination. Much as in a sunset, the atmosphere tends to more strongly scatter light with shorter wavelengths, so the illumination of the Moon by refracted light has a red hue, thus the phrase 'Blood Moon' is often found in descriptions of such lunar events as far back as eclipses are recorded.


Historical record

Records of solar eclipses have been kept since ancient times. Eclipse dates can be used for chronological dating of historical records. A
Syria Syria ( ar, سُورِيَا or سُورِيَة, translit=Sūriyā), officially the Syrian Arab Republic ( ar, الجمهورية العربية السورية, al-Jumhūrīyah al-ʻArabīyah as-Sūrīyah), is a Western Asian country loc ...
n clay tablet, in the Ugaritic language, records a solar eclipse which occurred on March 5, 1223 B.C., while Paul Griffin argues that a stone in Ireland records an eclipse on November 30, 3340 B.C. Positing classical-era astronomers' use of Babylonian eclipse records mostly from the 13th century BC provides a feasible and mathematically consistent explanation for the Greek finding all three lunar mean motions (synodic, anomalistic, draconitic) to a precision of about one part in a million or better. Chinese historical records of solar eclipses date back over 3,000 years and have been used to measure changes in the Earth's rate of spin. In 5th century AD, solar and lunar eclipses were scientifically explained by Aryabhata, in his treatise ''
Aryabhatiya ''Aryabhatiya'' (IAST: ') or ''Aryabhatiyam'' ('), a Sanskrit astronomical treatise, is the ''magnum opus'' and only known surviving work of the 5th century Indian mathematician Aryabhata. Philosopher of astronomy Roger Billard estimates that th ...
.'' Aryabhata states that the Moon and planets shine by reflected sunlight and explains eclipses in terms of shadows cast by and falling on Earth. Aryabhata provides the computation and the size of the eclipsed part during an eclipse. Indian computations were very accurate that 18th-century French scientist Guillaume Le Gentil, during a visit to Pondicherry, India, found the Indian computations of the duration of the
lunar eclipse A lunar eclipse occurs when the Moon moves into the Earth's shadow. Such alignment occurs during an eclipse season, approximately every six months, during the full moon phase, when the Moon's orbital plane is closest to the plane of the Earth ...
of 30 August 1765 to be short by only 41 seconds, whereas Le Gentil's charts were long by 68 seconds. By the 1600s, European astronomers were publishing books with diagrams explaining how lunar and solar eclipses occurred. In order to disseminate this information to a broader audience and decrease fear of the consequences of eclipses, booksellers printed broadsides explaining the event either using the science or via astrology.


Eclipses in mythology and religion

Before eclipses were understood as well as they are today, there was a much more fearful connotation surrounding the seemingly inexplicable events. There was very considerable confusion regarding eclipses before the 17th century because eclipses were not very accurately or scientifically described until
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
provided a scientific explanation for eclipses in the early seventeenth century. Typically in mythology, eclipses were understood to be one variation or another of a spiritual battle between the sun and evil forces or spirits of darkness. The phenomenon of the sun seeming to disappear was a very fearful sight to all who did not understand the science of eclipses as well as those who supported and believed in the idea of mythological gods. The sun was highly regarded as divine by many old religions, and some even viewed eclipses as the sun god being overwhelmed by evil spirits. More specifically, in
Norse mythology Norse, Nordic, or Scandinavian mythology is the body of myths belonging to the North Germanic peoples, stemming from Old Norse religion and continuing after the Christianization of Scandinavia, and into the Nordic folklore of the modern period ...
, it is believed that there is a wolf by the name of Fenrir that is in constant pursuit of the sun, and eclipses are thought to occur when the wolf successfully devours the divine sun. Other Norse tribes believe that there are two wolves by the names of Sköll and Hati that are in pursuit of the sun and the moon, known by the names of Sol and Mani, and these tribes believe that an eclipse occurs when one of the wolves successfully eats either the sun or the moon. Once again, this mythical explanation was a very common source of fear for the majority of people at the time who believed the sun to be a sort of divine power or god because the known explanations of eclipses were quite frequently viewed as the downfall of their highly regarded god. Similarly, other mythological explanations of eclipses describe the phenomenon of darkness covering the sky during the day as a war between the gods of the sun and the moon. In most types of mythologies and certain religions, eclipses were seen as a sign that the gods were angry and that danger was soon to come, so people often altered their actions in an effort to dissuade the gods from unleashing their wrath. In the
Hindu Hindus (; ) are people who religiously adhere to Hinduism.Jeffery D. Long (2007), A Vision for Hinduism, IB Tauris, , pages 35–37 Historically, the term has also been used as a geographical, cultural, and later religious identifier for ...
religion, for example, people often sing religious hymns for protection from the evil spirits of the eclipse, and many people of the Hindu religion refuse to eat during an eclipse to avoid the effects of the evil spirits. Hindu people living in India will also wash off in the
Ganges River The Ganges ( ) (in India: Ganga ( ); in Bangladesh: Padma ( )). "The Ganges Basin, known in India as the Ganga and in Bangladesh as the Padma, is an international river to which India, Bangladesh, Nepal and China are the riparian states." is ...
, which is believed to be spiritually cleansing, directly following an eclipse to clean themselves of the evil spirits. In early Judaism and Christianity, eclipses were viewed as signs from God, and some eclipses were seen as a display of God's greatness or even signs of cycles of life and death. However, more ominous eclipses such as a blood moon were believed to be a divine sign that God would soon destroy their enemies.


Other planets and dwarf planets


Gas giants

The gas giant planets have many moons and thus frequently display eclipses. The most striking involve Jupiter, which has four large moons and a low axial tilt, making eclipses more frequent as these bodies pass through the shadow of the larger planet. Transits occur with equal frequency. It is common to see the larger moons casting circular shadows upon Jupiter's cloudtops. The eclipses of the Galilean moons by Jupiter became accurately predictable once their orbital elements were known. During the 1670s, it was discovered that these events were occurring about 17 minutes later than expected when Jupiter was on the far side of the Sun.
Ole Rømer Ole Christensen Rømer (; 25 September 1644 – 19 September 1710) was a Danish astronomer who, in 1676, made the first measurement of the speed of light. Rømer also invented the modern thermometer showing the temperature between two fix ...
deduced that the delay was caused by the time needed for light to travel from Jupiter to the Earth. This was used to produce the first estimate of the speed of light. On the other three gas giants (
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
, Uranus and
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times ...
) eclipses only occur at certain periods during the planet's orbit, due to their higher inclination between the orbits of the moon and the orbital plane of the planet. The moon
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
, for example, has an orbital plane tilted about 1.6° to Saturn's equatorial plane. But Saturn has an axial tilt of nearly 27°. The orbital plane of Titan only crosses the line of sight to the Sun at two points along Saturn's orbit. As the orbital period of Saturn is 29.7 years, an eclipse is only possible about every 15 years. The timing of the Jovian satellite eclipses was also used to calculate an observer's longitude upon the Earth. By knowing the expected time when an eclipse would be observed at a standard longitude (such as Greenwich), the time difference could be computed by accurately observing the local time of the eclipse. The time difference gives the longitude of the observer because every hour of difference corresponded to 15° around the Earth's equator. This technique was used, for example, by Giovanni D. Cassini in 1679 to re-map France.


Mars

On Mars, only partial solar eclipses ( transits) are possible, because neither of its moons is large enough, at their respective orbital radii, to cover the Sun's disc as seen from the surface of the planet. Eclipses of the moons by Mars are not only possible, but commonplace, with hundreds occurring each Earth year. There are also rare occasions when Deimos is eclipsed by Phobos. Martian eclipses have been photographed from both the surface of Mars and from orbit.


Pluto

Pluto, with its proportionately largest moon
Charon In Greek mythology, Charon or Kharon (; grc, Χάρων) is a psychopomp, the ferryman of Hades, the Greek underworld. He carries the souls of those who have been given funeral rites across the rivers Acheron and Styx, which separate the wo ...
, is also the site of many eclipses. A series of such mutual eclipses occurred between 1985 and 1990. These daily events led to the first accurate measurements of the physical parameters of both objects.


Mercury and Venus

Eclipses are impossible on
Mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
and Venus, which have no moons. However, as seen from the Earth, both have been observed to transit across the face of the Sun. There are on average 13 transits of Mercury each century. Transits of Venus occur in pairs separated by an interval of eight years, but each pair of events happen less than once a century. According to NASA, the next pair of Venus transits will occur on December 10, 2117 and December 8, 2125. Transits of Mercury are much more common.


Eclipsing binaries

A
binary star A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in wh ...
system consists of two stars that orbit around their common centre of mass. The movements of both stars lie on a common orbital plane in space. When this plane is very closely aligned with the location of an observer, the stars can be seen to pass in front of each other. The result is a type of extrinsic variable star system called an eclipsing binary. The maximum
luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
of an eclipsing binary system is equal to the sum of the luminosity contributions from the individual stars. When one star passes in front of the other, the luminosity of the system is seen to decrease. The luminosity returns to normal once the two stars are no longer in alignment. The first eclipsing binary star system to be discovered was Algol, a star system in the constellation
Perseus In Greek mythology, Perseus (Help:IPA/English, /ˈpɜːrsiəs, -sjuːs/; Greek language, Greek: Περσεύς, Romanization of Greek, translit. Perseús) is the legendary founder of Mycenae and of the Perseid dynasty. He was, alongside Cadmus ...
. Normally this star system has a visual magnitude of 2.1. However, every 2.867 days the magnitude decreases to 3.4 for more than nine hours. This is caused by the passage of the dimmer member of the pair in front of the brighter star. The concept that an eclipsing body caused these luminosity variations was introduced by John Goodricke in 1783.


Types

Sun - Moon - Earth:
Solar eclipse A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of the Earth, totally or partially. Such an alignment occurs during an eclipse season, approximately every six month ...
, annular eclipse , hybrid eclipse , partial eclipse Sun - Earth - Moon:
Lunar eclipse A lunar eclipse occurs when the Moon moves into the Earth's shadow. Such alignment occurs during an eclipse season, approximately every six months, during the full moon phase, when the Moon's orbital plane is closest to the plane of the Earth ...
, penumbral eclipse , partial lunar eclipse , central lunar eclipse Sun - Phobos - Mars: Transit of Phobos from Mars , Solar eclipses on Mars Sun - Deimos - Mars: Transit of Deimos from Mars , Solar eclipses on Mars Other types: Solar eclipses on Jupiter ,
Solar eclipses on Saturn Solar eclipses on Saturn occur when the natural satellites of Saturn pass in front of the Sun as seen from Saturn. These eclipses happen fairly often. For example, some of Saturn's moons can have a solar eclipse every day depending on the satur ...
, Solar eclipses on Uranus ,
Solar eclipses on Neptune Solar eclipses on Neptune occur when substantial natural satellites of Neptune pass in front of the Sun as seen from the planet. For bodies which appear smaller in angular diameter than the Sun, the proper term would be a transit and bodies whic ...
, Solar eclipses on Pluto


See also

* List of solar eclipses in the 21st century * Mursili's eclipse * Transit of Venus


References


External links

*
A Catalogue of Eclipse Cycles

Search 5,000 years of eclipses



International Astronomical Union's Working Group on Solar Eclipses



Classroom demonstration of how an eclipse occurs
;Image galleries
The World at Night Eclipse Gallery



Williams College eclipse collection of images
{{Authority control Astrological aspects Astronomical events Earth phenomena Concepts in astronomy