HOME

TheInfoList



OR:

Early long-term potentiation (E-LTP) is the first phase of
long-term potentiation In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons ...
(LTP), a well-studied form of
synaptic plasticity In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuit ...
, and consists of an increase in synaptic strength. LTP could be produced by repetitive stimulation of the presynaptic terminals, and it is believed to play a role in memory function in the hippocampus, amygdala and other cortical brain structures in mammals. Long-term potentiation occurs when synaptic transmission becomes more effective as a result of recent activity. The neuronal changes can be temporary and wear off after some hours (early LTP) or much more stable and long-lasting (late LTP).


Early and late phase

It has been proposed that long-term potentiation is composed of at least two different phases: protein synthesis-independent E-LTP (early LTP) and protein synthesis-dependent L-LTP (late LTP). A single train of high-frequency stimuli is needed to trigger E-LTP that begins right after the stimulation, lasting a few hours or less, and depending primarily on short-term
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
activity. Contrarily stronger stimulation protocols are needed to recruit L-LTP that begins after a few hours, lasts for at least eight hours, and depends on the activation of de novo gene transcription. These different characteristics suggest a relationship between E-LTP and
short-term memory Short-term memory (or "primary" or "active memory") is the capacity for holding a small amount of information in an active, readily available state for a short interval. For example, short-term memory holds a phone number that has just been recit ...
phase, as well as L-LTP and
long-term memory Long-term memory (LTM) is the stage of the Atkinson–Shiffrin memory model in which informative knowledge is held indefinitely. It is defined in contrast to short-term and working memory, which persist for only about 18 to 30 seconds. Long-t ...
phase.


LTP and memory phases

A comparison between LTP induced by two spaced trains of stimuli and LTP induced by four trains in wild-type mice showed that LTP induced by two trains decays faster than the one induced by one train and slower than the one induced by four trains. Moreover, the LTP induced by two trains is only partially impaired by protein kinase A (PKA) inhibition and not by protein synthesis inhibition. These findings suggested that there is a PKA-dependent phase of LTP intermediate to E-LTP and L-LTP, which was called intermediate LTP (I-LTP). In the transgenic mice, on the other hand, LTP induced by two trains decayed faster than in wild-type mice, implying that excessive
calcineurin Calcineurin (CaN) is a calcium and calmodulin dependent serine/threonine protein phosphatase (also known as protein phosphatase 3, and calcium-dependent serine-threonine phosphatase). It activates the T cells of the immune system and can be bloc ...
activity suppresses both I-LTP and L-LTP. This calcineurin-overexpression could be associated to memory-related behavioral deficits. The transgenic mice performed poorly in
spatial memory In cognitive psychology and neuroscience, spatial memory is a form of memory responsible for the recording and recovery of information needed to plan a course to a location and to recall the location of an object or the occurrence of an event. Sp ...
tasks compared to wild-type mice, indicating a deficit. However when trained more intensively their performance deficit with respect to wild-type mice disappears. Moreover the transgenic mice performed normally on memory tasks 30 minutes after training, but were considerably impaired 24 hours after training. This led to the conclusion that calcineurin-overexpressing mice have a deficit in long-term memory consolidation, which reflects their deficit in late phase LTP.


Biological processes

Training of simple reflexes in
Aplysia ''Aplysia'' () is a genus of medium-sized to extremely large sea slugs, specifically sea hares, which are one clade of large sea slugs, marine gastropod mollusks. These benthic herbivorous creatures can become rather large compared with most ...
has shown a strengthening between sensory and motor neurons responsible for those reflexes; on a cellular level, for short-term memory (and thus, early LTP) potentiation leads to an increase in presynaptic neurotransmitter by means of modifications of proteins through cAMP-dependent PKA and PKC. The long-term process requires new protein synthesis and CAMP-mediated gene expression, and results in the growth of new synaptic connections. These findings have led to the question whether there is a similar process in mammals. Input to the
hippocampus The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, a ...
comes from the neurons of the entorhinal cortex by means of the perforant pathway, which synapses on the
granule cell A granule is a large particle or grain. It can refer to: * Granule (cell biology), any of several submicroscopic structures, some with explicable origins, others noted only as cell type-specific features of unknown function ** Azurophilic granul ...
s of the
dentate gyrus The dentate gyrus (DG) is part of the hippocampal formation in the temporal lobe of the brain, which also includes the hippocampus and the subiculum. The dentate gyrus is part of the hippocampal trisynaptic circuit and is thought to contribute ...
. The granule cells in turn send their axons, the mossy fibre pathway (CA3), to synapse on the
pyramidal cell Pyramidal cells, or pyramidal neurons, are a type of multipolar neuron found in areas of the brain including the cerebral cortex, the hippocampus, and the amygdala. Pyramidal neurons are the primary excitation units of the mammalian prefrontal cor ...
s of the CA3 region. Finally, the axons of the pyramidal cells in the CA3 regions, the Schaffer collateral pathway (CA1), terminate on the pyramidal cells of the CA1 region. Damage to any of these hippocampal pathways is sufficient to cause some memory disturbance in humans. In the perforant and Schaffer pathways, LTP is induced by activating a postsynaptic NMDA receptor, causing an influx of calcium. In the mossy fibres pathway on the other hand, LTP is induced presynaptically through an influx of glutamate.


E-LTP and classical conditioning

Early LTP is best studied in the context of
classical conditioning Classical conditioning (also known as Pavlovian or respondent conditioning) is a behavioral procedure in which a biologically potent stimulus (e.g. food) is paired with a previously neutral stimulus (e.g. a triangle). It also refers to the learni ...
. As the signal of an
unconditioned stimulus Classical conditioning (also known as Pavlovian or respondent conditioning) is a behavioral procedure in which a biologically potent stimulus (e.g. food) is paired with a previously neutral stimulus (e.g. a triangle). It also refers to the learni ...
enters the
pontine nuclei Pontine may refer to: * Having to do with the pons, a structure located in the brain stem (from ''pons'', "bridge") * Pontine Marshes, a region of Italy near Rome * Pontine Islands The Pontine Islands (, also ; it, Isole Ponziane ) are an ar ...
in the brainstem, the signal travels through the mossy fibres to the interpositus nucleus and the parallel fibres in the cerebellum. The parallel fibres synapse on so called
Purkinje cells Purkinje cells, or Purkinje neurons, are a class of GABAergic inhibitory neurons located in the cerebellum. They are named after their discoverer, Czech anatomist Jan Evangelista Purkyně, who characterized the cells in 1839. Structure The ...
, which simultaneously receive input of the unconditioned stimulus via the inferior olives and climbing fibres. The parallel fibres release
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
, which activates inhibitory
metabotropic A metabotropic receptor, also referred to by the broader term G-protein-coupled receptor, is a type of membrane receptor that initiates a number of metabolic steps to modulate cell activity. The nervous system utilizes two types of receptors: met ...
and excitatory
ionotropic Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in res ...
AMPA receptors. The metabotropic receptors activate an enzyme cascade via
G protein G proteins, also known as guanine nucleotide-binding proteins, are a family of proteins that act as molecular switches inside cells, and are involved in transmitting signals from a variety of stimuli outside a cell to its interior. Their act ...
, which leads to the activation of protein
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
C (PKC). This PKC phosphorylates the active ionotropic receptors. At another place of the cell, the climbing fibres carry the neurotransmitter
aspartate Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
to the
Purkinje cell Purkinje cells, or Purkinje neurons, are a class of GABAergic inhibitory neurons located in the cerebellum. They are named after their discoverer, Czech people, Czech anatomist Jan Evangelista Purkyně, who characterized the cells in 1839. Stru ...
, and that leads to the opening of calcium channels, which in turn causes an increased influx of calcium to the cell. The calcium activates PKC once again, and the phosphorylised ionotropic receptors are internalised. Thus, the surplus of metabotropic receptors hyperpolarises the cell, and the interpositus nucleus depolarises the inferior olives, which causes a decrease in expectation of the unconditioned stimulus and therefore causing an inhibition in early LTP or a period of
long-term depression In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms dependi ...
.


Clinical perspectives


LTP in Alzheimer's disease

It is known that
Alzheimer's disease Alzheimer's disease (AD) is a neurodegeneration, neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in short-term me ...
is characterized by extracellular deposits of neurotoxic amyloid peptides (Aβ), intracellular aggregation of hyper-phosphorylated tau protein, and neuronal death. Whereas
chronic stress Chronic stress is the physiological or psychological response induced by a long-term internal or external stressor. The stressor, either physically present or recollected, will produce the same effect and trigger a chronic stress response. There is ...
is characterized by its negative impacts on the effect of learning and memory and furthermore can exacerbate a number of disorders, including
Alzheimer's disease Alzheimer's disease (AD) is a neurodegeneration, neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in short-term me ...
(AD). Previous studies have shown that the combination of chronic psychosocial stress and chronic infusion of a pathogenic dose of Aβ peptides impairs learning and memory and severely diminishes early phase long-term potentiation (E-LTP) in the hippocampal area CA1 of anesthetized rat. Chronic psychosocial stress was produced using a rat intruder model and the at-risk rat model of Alzheimer's disease was created by osmotic pump infusion of sub-pathological dose of Aβ (subAβ). Electrophysiological methods were used to evoke and record early and late phase LTP in the dentate gyrus of anesthetized rats, and immunoblotting was used to measure levels of memory-related signaling molecules in the same region. These Electrophysiological and molecular tests in the dentate gyrus showed that subAβ rats or stressed rats were not different from control rats. However, the present findings conclude that when stress and subAβ are combined, significant suppression of E-LTP magnitude results. In summary, although the CA1 and DG regions are closely related physically and functionally, they react differently to insults. While the area CA1 is vulnerable to stress and the combination stress/subAβ, the DG is remarkably resistant to the offending combination of subAβ and chronic stress.


LTP in drug use

Another use of LTP is in drug abuse. As can be seen in many drug victims, conditioning plays a vital role in building up a tolerance. In reconditioning recovering addicts to the place in which they used to take drugs with a different stimulus, the craving they feel could be counteracted. A rather successful experimental study has shown that this paradigm lowers the danger of relapsing and works as
extinction Extinction is the termination of a kind of organism or of a group of kinds (taxon), usually a species. The moment of extinction is generally considered to be the death of the last individual of the species, although the capacity to breed and ...
.


Alternative models

The hypothesis that the stabilisation of synaptic plasticity depends on de novo protein synthesis is popular in literature. The temporal differentiation between early and late LTP is also based on this. Early LTP is associated with short-term memory and late LTP with long-term memory. Behavioural studies raised evidence against this differentiation. Studies with protein synthesis inhibitors showed that blocking protein synthesis did not block memory retention. Stable LTP were found in slice preparation of the hippocampus under a state of global protein synthesis inhibition. Those studies show that LTP stabilization can happen independently from protein synthesis. This shows that the association between protein synthesis and stabilization is insufficient to determine the difference between early and late LTP. Instead of the differentiation into early and late LTP and protein synthesis as the driving force for LTP and memory stabilization, an alternative model was proposed: in addition to the protein synthesis, the
protein degradation Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, ...
also determines the stabilization, so the turn-over rate of proteins is said to underlie LTP stabilization. According to the model, the differentiation into temporal phases of LTP is inappropriate and even hindering to future research about LTP. Mechanisms can be overlooked due to the closed temporalization of function and processes.


References

{{DEFAULTSORT:Early long-term potentiation Behavioral neuroscience Memory Neurophysiology Neuroplasticity