E7 Polytope
   HOME

TheInfoList



OR:

In 7-dimensional
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, there are 127 uniform polytopes with E7 symmetry. The three simplest forms are the 321, 231, and 132 polytopes, composed of 56, 126, and 576 vertices respectively. They can be visualized as symmetric
orthographic projection Orthographic projection (also orthogonal projection and analemma) is a means of representing Three-dimensional space, three-dimensional objects in Two-dimensional space, two dimensions. Orthographic projection is a form of parallel projection in ...
s in
Coxeter plane In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there a ...
s of the E7 Coxeter group, and other subgroups.


Graphs

Symmetric
orthographic projection Orthographic projection (also orthogonal projection and analemma) is a means of representing Three-dimensional space, three-dimensional objects in Two-dimensional space, two dimensions. Orthographic projection is a form of parallel projection in ...
s of these 127 polytopes can be made in the E7, E6, D6, D5, D4, D3, A6, A5, A4, A3, A2
Coxeter plane In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there a ...
s. Ak has ''k+1'' symmetry, Dk has ''2(k-1)'' symmetry, and E6 and E7 have ''12'', ''18'' symmetry respectively. For 10 of 127 polytopes (7 single rings, and 3 truncations), they are shown in these 9 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.


References

*
H.S.M. Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 * Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', ath. Zeit. 46 (1940) 380-407, MR 2,10** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', ath. Zeit. 188 (1985) 559-591** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966 * {{Polytopes 7-polytopes