HOME

TheInfoList



OR:

Doppler echocardiography is a procedure that uses
Doppler ultrasonography Doppler ultrasonography is medical ultrasonography that employs the Doppler effect to perform imaging of the movement of tissues and body fluids (usually blood), and their relative velocity to the probe. By calculating the frequency shift of a ...
to examine the
heart The heart is a muscular Organ (biology), organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as ca ...
. An
echocardiogram An echocardiography, echocardiogram, cardiac echo or simply an echo, is an ultrasound of the heart. It is a type of medical imaging of the heart, using standard ultrasound or Doppler ultrasound. Echocardiography has become routinely used in th ...
uses high frequency sound waves to create an image of the heart while the use of Doppler technology allows determination of the speed and direction of
blood flow Hemodynamics or haemodynamics are the dynamics of blood flow. The circulatory system is controlled by homeostatic mechanisms of autoregulation, just as hydraulic circuits are controlled by control systems. The hemodynamic response continuously m ...
by utilizing the
Doppler effect The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who ...
. An echocardiogram can, within certain limits, produce accurate assessment of the direction of blood flow and the
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
of blood and cardiac tissue at any arbitrary point using the Doppler effect. One of the limitations is that the ultrasound beam should be as parallel to the blood flow as possible. Velocity measurements allow assessment of
cardiac valve The heart is a muscular organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as carbon dioxide to t ...
areas and function, any abnormal communications between the left and right side of the heart, any leaking of blood through the valves (
valvular regurgitation Regurgitation is blood flow in the opposite direction from normal, as the backward flowing of blood into the heart or between heart chambers. It is the circulatory equivalent of backflow in engineered systems. It is sometimes called reflux. Regur ...
), calculation of the
cardiac output In cardiac physiology, cardiac output (CO), also known as heart output and often denoted by the symbols Q, \dot Q, or \dot Q_ , edited by Catherine E. Williamson, Phillip Bennett is the volumetric flow rate of the heart's pumping output: th ...
and calculation of
E/A ratio The E/A ratio is a marker of the function of the left ventricle of the heart. It represents the ratio of peak velocity blood flow from left ventricular relaxation in early diastole (the E wave) to peak velocity flow in late diastole caused by atria ...

Abdul Latif Mohamed, Jun Yong, Jamil Masiyati, Lee Lim, Sze Chec Tee. ''The Prevalence Of Diastolic Dysfunction In Patients With Hypertension Referred For Echocardiographic Assessment of Left Ventricular Function.'' Malaysian Journal of Medical Sciences, Vol. 11, No. 1, January 2004, pp. 66-74
(a measure of
diastolic dysfunction Heart failure with preserved ejection fraction (HFpEF) is a form of heart failure in which the ejection fraction – the percentage of the volume of blood ejected from the left ventricle with each heartbeat divided by the volume of blood when the l ...
). Contrast-enhanced ultrasound-using gas-filled microbubble contrast media can be used to improve velocity or other flow-related medical measurements. An advantage of Doppler echocardiography is that it can be used to measure blood flow within the heart without invasive procedures such as
cardiac catheterization Cardiac catheterization (heart cath) is the insertion of a catheter into a chamber or vessel of the heart. This is done both for diagnostic and interventional purposes. A common example of cardiac catheterization is coronary catheterization th ...
. In addition, with slightly different filter/gain settings, the method can measure tissue velocities by
tissue Doppler echocardiography Tissue Doppler echocardiography (TDE) is a medical ultrasound technology, specifically a form of echocardiography that measures the velocity of the heart muscle (myocardium) through the phases of one or more heartbeats by the Doppler effect (freque ...
. The combination of flow and tissue velocities can be used for estimating left ventricular filling
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
, although only under certain conditions. Although "Doppler" has become synonymous with "velocity measurement" in medical imaging, in many cases it is not the frequency shift (Doppler shift) of the received signal that is measured, but the phase shift (when the received signal arrives). However, the calculation result will end up identical. This procedure is frequently used to examine children's hearts for
heart disease Cardiovascular disease (CVD) is a class of diseases that involve the heart or blood vessels. CVD includes coronary artery diseases (CAD) such as angina and myocardial infarction (commonly known as a heart attack). Other CVDs include stroke, h ...
because there is no age or size requirement.


2D Doppler imaging

Unlike 1D Doppler imaging, which can only provide one-dimensional velocity and has dependency on the beam to flow angle,J. A. Jensen, Estimation of Blood Velocities Using Ultrasound, A Signal Processing Approach, New York: Cambridge University Press, 1996. 2D velocity estimation using Doppler ultrasound is able to generate velocity vectors with axial and lateral velocity components. 2D velocity is useful even if complex flow conditions such as stenosis and bifurcation exist. There are two major methods of 2D velocity estimation using ultrasound: Speckle tracking and crossed beam Vector Doppler, which are based on measuring the time shifts and phase shifts respectively.P. S. a. L. L. Abigail Swillens, "Two-Dimensional Blood Velocity Estimation With Ultrasound: Speckle Tracking Versus Crossed-Beam Vector Doppler Based on Flow Simulations in a Carotid Bifurcation Model," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 327-338, 2010.


Vector Doppler

Vector Doppler is a natural extension of the traditional 1D Doppler imaging based on phase shift. The phase shift is found by taking the autocorrelation between echoes from two consecutive firings.R. S. C. Cobbold, Foundations of Biomedical Ultrasound, Oxford University Press, 2007. The main idea of Vector Doppler is to divide the transducer into three apertures: one at the center as the transmit aperture and two on each side as the receive apertures. The phase shifts measured from left and right apertures are combined to give the axial and lateral velocity components. The positions and the relative angles between apertures need to be tuned according to the depth of the vessel and the lateral position of the region of interest.


Speckle tracking

Speckle tracking, which is a well-established method in video compression and other applications, can be used to estimate blood flow in ultrasound systems. The basic idea of speckle tracking is to find the best match of a certain speckle from one frame within a search region in subsequent frames. The decorrelation between frames is one of the major factors degrading its performance. The decorrelation is mainly caused by the different velocity of pixels within a speckle, as they do not move as a block. This is less severe when measuring the flow at the center, where the changing rate of the velocity is the lowest. The flow at the center usually has the largest velocity magnitude, called "peak velocity". It is the most needed information in some cases, such as diagnosing stenosis.G. Reutern, M. Goertler, N. Bornstein, M. Sette, D. Evans, A. Hetzel, M. Kaps, F. Perren, A. Razumovky, T. Shiogai, E. Titianova, P. Traubner, N. Venketasubramanian, L. Wong and M. Yasaka, "Grading Carotid Stenosis Using Ultrasonic Methods," Stroke, Journal of the American Heart Association, vol. 43, pp. 916-921, 2012. There are mainly three methods of finding the best match: SAD (Sum of absolute difference), SSD (Sum of squared difference) and Cross correlation. Assume X_0 (i,j) is a pixel in the kernel and X_1 (i+\alpha,j+\beta) is the mapped pixel shifted by (\alpha,\beta) in the search region.J. Luo and E. E. Konofagou, "A Fast Motion and Strain Estimation," in Ultrasound Symposium, 2010. SAD is calculated as: D(\alpha,\beta)=\sum_ \sum_ , X_0 (i,j)-X_1 (i+\alpha,j+\beta), SSD is calculated as: D(\alpha,\beta)=\sum_ \sum_ (X_0 (i,j)-X_1 (i+\alpha,j+\beta))^ Normalized cross correlation coefficient is calculated as: \rho(\alpha,\beta)=\frac where \bar and \bar are the average values of X_0 (i,j) and X_1 (i,j) respectively. The (\alpha,\beta) pair that gives the lowest D for SAD and SSD, or the largest ρ for the cross correlation, is selected as the estimation of the movement. The velocity is then calculated as the movement divided by the time difference between the frames. Usually, the median or average of multiple estimations is taken to give more accurate result.


Sub pixel accuracy

In ultrasound systems, lateral resolution is usually much lower than the axial resolution. The poor lateral resolution in the B-mode image also results in poor lateral resolution in flow estimation. Therefore, sub pixel resolution is needed to improve the accuracy of the estimation in the lateral dimension. In the meantime, we could reduce the sampling frequency along the axial dimension to save computations and memories if the sub pixel movement is estimated accurately enough. There are generally two kinds of methods to obtain the sub pixel accuracy: interpolation methods, such as parabolic fit, and phase based methods in which the peak lag is found when the phase of the analytic cross correlation function crosses zero.X. Chen, M. J. Zohdy, S. Y. Emelianov and M. O'Donnell, "Lateral Speckle Tracking Using Synthetic Lateral Phase," IEEE Transactions on Ultrasonics, Ferroelectrcs and Frequency Control, vol. 51, no. 5, pp. 540-550, 2004.


= Interpolation method (parabolic fit)

= As shown in the right figure, parabolic fit can help find the real peak of the cross correlation function. The equation for parabolic fit in 1D is: k_=k_s-\frac where R_ is the cross correlation function and k_s is the originally found peak. k_ is then used to find the displacement of scatterers after interpolation. For the 2D scenario, this is done in both the axial and lateral dimensions. Some other techniques can be used to improve the accuracy and robustness of the interpolation method, including parabolic fit with bias compensation and matched filter interpolation.X. Lai and H. Torp, "Interpolation Methods for Time-Delay Estimation Using Cross-Correlation Method for Blood Velocity Measurement," IEEE Transactions on Ultrasonics, Ferroelectrcs and Frequency Control, vol. 46, no. 2, pp. 277-290, 1999.


= Phase based method

= The main idea of this method is to generate synthetic lateral phase and use it to find the phase that crosses zero at the peak lag. The right figure illustrates the procedure of creating the synthetic lateral phase, as a first step. Basically, the lateral spectrum is split in two to generate two spectra with nonzero center frequencies. The cross correlation is done for both the up signal and down signal, creating R_ and R_ respectively. The lateral correlation function and axial correlation function are then calculated as follows: R_=R_*R_^; R_=R_*R_ where R_^ is the complex conjugate of R_. They have the same magnitude, and the integer peak is found using traditional cross correlation methods. After the integer peak is located, a 3 by 3 region surrounding the peak is then extracted with its phase information. For both the lateral and axial dimensions, the zero crossings of a one-dimensional correlation function at the other dimension’s lags are found, and a linear least squares fitted line is created accordingly. The intersection of the two lines gives the estimate of the 2D displacement.


Comparison between vector Doppler and speckle tracking

Both methods could be used for 2D Velocity Vector Imaging, but Speckle Tracking would be easier to extend to 3D. Also, in Vector Doppler, the depth and resolution of the region of interest are limited by the aperture size and the maximum angle between the transmit and receive apertures, while Speckle Tracking has the flexibility of alternating the size of the kernel and search region to adapt to different resolution requirement. However, vector Doppler is less computationally complex than speckle tracking.


Volumetric flow estimation

Velocity estimation from conventional Doppler requires knowledge of the beam-to-flow angle (
inclination angle Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth ...
) to produce reasonable results for regular flows and does a poor job of estimating complex flow patterns, such as those due to stenosis and/or bifurcation. Volumetric flow estimation requires integrating velocity across the vessel cross-section, with assumptions about the vessel geometry, further complicating flow estimates. 2D Doppler data can be used to calculate the volumetric flow in certain integration planes.M. Richards, O. Kripfgans, J. Rubin, A. Hall and J. Fowlkes, "Mean Volume Flow Estimation in Pulsatile Flow Conditions," Ultrasound in Med. & Biol., vol. 35, pp. 1880-1891, 2009. The integration plane is chosen to be perpendicular to the beam, and Doppler power (generated from power Doppler mode of
Doppler ultrasound Doppler ultrasonography is medical ultrasonography that employs the Doppler effect to perform imaging of the movement of tissues and body fluids (usually blood), and their relative velocity to the probe. By calculating the frequency shift of a ...
) can be used to differentiate between the components that are inside and outside the vessel. This method does not require prior knowledge of the Doppler angle, flow profile and vessel geometry.


Promise of 3D

Until recently, ultrasound images have been 2D views and have relied on highly-trained specialists to properly orient the probe and select the position within the body to image with only few and complex visual cues. The complete measurement of 3D velocity vectors makes many post-processing techniques possible. Not only is the volumetric flow across any plane measurable, but also, other physical information such as stress and pressure can be calculated based on the 3D velocity field. However, it is quite challenging to measure the complex blood flow to give velocity vectors, due to the fast acquisition rate and the massive computations needed for it. Plane wave technique is thus promising as it can generate very high frame rate.J. Udesen, F. Gran, K. Hansen, J. Jensen, C. Thomsen and M. Nielsen, "High Frame Rate Blood Vector Velocity Imaging Using Plane Waves: Simulations and Preliminary Experiments," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 8, pp. 1729-1743, 2008.


See also

*
Medical ultrasonography Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, mus ...
section:
Doppler sonography Doppler ultrasonography is medical ultrasonography that employs the Doppler effect to perform imaging of the movement of tissues and body fluids (usually blood), and their relative velocity to the probe. By calculating the frequency shift of a ...
*
Echocardiography An echocardiography, echocardiogram, cardiac echo or simply an echo, is an ultrasound of the heart. It is a type of medical imaging of the heart, using standard ultrasound or Doppler ultrasound. Echocardiography has become routinely used in ...
*
American Society of Echocardiography The American Society of Echocardiography (ASE) is a professional organization of physicians, cardiac sonographers, nurses and scientists involved in echocardiography, the use of ultrasound to image the heart and vascular system. The organization wa ...
*
Christian Doppler Christian Andreas Doppler ( (); 29 November 1803 – 17 March 1853) was an Austrian mathematician and physicist. He is celebrated for his principle – known as the Doppler effect – that the observed frequency of a wave depends on the relative ...


References


External links


Basic ultrasound, echocardiography and Doppler for clinicians

Echocardiography Textbook by Bonita Anderson

Echocardiography (Ultrasound of the heart)

Doppler Examination - Introduction

The Doppler Principle and the Study of Cardiac Flows
{{Cardiac procedures Medical ultrasonography Medical equipment Cardiac procedures Multidimensional signal processing