HOME

TheInfoList



OR:

In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder.


Definition

An integer is divisible by a nonzero integer if there exists an integer such that n=km. This is written as :m\mid n. Other ways of saying the same thing are that divides , is a divisor of , is a factor of , and is a multiple of . If does not divide , then the notation is m\not\mid n. Usually, is required to be nonzero, but is allowed to be zero. With this convention, m \mid 0 for every nonzero integer . Some definitions omit the requirement that m be nonzero.


General

Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called
even Even may refer to: General * Even (given name), a Norwegian male personal name * Even (surname) * Even (people), an ethnic group from Siberia and Russian Far East **Even language, a language spoken by the Evens * Odd and Even, a solitaire game wh ...
, and integers not divisible by 2 are called odd. 1, −1, ''n'' and −''n'' are known as the trivial divisors of ''n''. A divisor of ''n'' that is not a trivial divisor is known as a non-trivial divisor (or strict divisor). A nonzero integer with at least one non-trivial divisor is known as a composite number, while the
units Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (al ...
−1 and 1 and prime numbers have no non-trivial divisors. There are divisibility rules that allow one to recognize certain divisors of a number from the number's digits.


Examples

*7 is a divisor of 42 because 7\times 6=42, so we can say 7\mid 42. It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. *The non-trivial divisors of 6 are 2, −2, 3, −3. *The positive divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42. *The
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of all positive divisors of 60, A=\, partially ordered by divisibility, has the
Hasse diagram In order theory, a Hasse diagram (; ) is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction. Concretely, for a partially ordered set ''(S, ≤)'' one represents e ...
:


Further notions and facts

There are some elementary rules: * If a \mid b and b \mid c, then a \mid c, i.e. divisibility is a
transitive relation In mathematics, a relation on a set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Each partial order as well as each equivalence relation needs to be transitive. Definition A homo ...
. * If a \mid b and b \mid a, then a = b or a = -b. * If a \mid b and a \mid c, then a \mid (b + c) holds, as does a \mid (b - c). However, if a \mid b and c \mid b, then (a + c) \mid b does ''not'' always hold (e.g. 2\mid6 and 3 \mid 6 but 5 does not divide 6). If a \mid bc, and \gcd(a, b) = 1, then a \mid c.\gcd refers to the greatest common divisor. This is called
Euclid's lemma In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers, namely: For example, if , , , then , and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as we ...
. If p is a prime number and p \mid ab then p \mid a or p \mid b. A positive divisor of n which is different from n is called a or an of n. A number that does not evenly divide n but leaves a remainder is sometimes called an of n. An integer n > 1 whose only proper divisor is 1 is called a prime number. Equivalently, a prime number is a positive integer that has exactly two positive factors: 1 and itself. Any positive divisor of n is a product of prime divisors of n raised to some power. This is a consequence of the fundamental theorem of arithmetic. A number n is said to be perfect if it equals the sum of its proper divisors, deficient if the sum of its proper divisors is less than n, and abundant if this sum exceeds n. The total number of positive divisors of n is a
multiplicative function In number theory, a multiplicative function is an arithmetic function ''f''(''n'') of a positive integer ''n'' with the property that ''f''(1) = 1 and f(ab) = f(a)f(b) whenever ''a'' and ''b'' are coprime. An arithmetic function ''f''(''n'') is ...
d(n), meaning that when two numbers m and n are relatively prime, then d(mn)=d(m)\times d(n). For instance, d(42) = 8 = 2 \times 2 \times 2 = d(2) \times d(3) \times d(7); the eight divisors of 42 are 1, 2, 3, 6, 7, 14, 21 and 42. However, the number of positive divisors is not a totally multiplicative function: if the two numbers m and n share a common divisor, then it might not be true that d(mn)=d(m)\times d(n). The sum of the positive divisors of n is another multiplicative function \sigma (n) (e.g. \sigma (42) = 96 = 3 \times 4 \times 8 = \sigma (2) \times \sigma (3) \times \sigma (7) = 1+2+3+6+7+14+21+42). Both of these functions are examples of divisor functions. If the prime factorization of n is given by : n = p_1^ \, p_2^ \cdots p_k^ then the number of positive divisors of n is : d(n) = (\nu_1 + 1) (\nu_2 + 1) \cdots (\nu_k + 1), and each of the divisors has the form : p_1^ \, p_2^ \cdots p_k^ where 0 \le \mu_i \le \nu_i for each 1 \le i \le k. For every natural n, d(n) < 2 \sqrt. Also, :d(1)+d(2)+ \cdots +d(n) = n \ln n + (2 \gamma -1) n + O(\sqrt). where \gamma is Euler–Mascheroni constant. One interpretation of this result is that a randomly chosen positive integer ''n'' has an average number of divisors of about \ln n. However, this is a result from the contributions of numbers with "abnormally many" divisors.


In abstract algebra


Ring theory


Division lattice

In definitions that include 0, the relation of divisibility turns the set \mathbb of
non-negative In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or i ...
integers into a
partially ordered set In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
: a complete distributive lattice. The largest element of this lattice is 0 and the smallest is 1. The meet operation ∧ is given by the greatest common divisor and the join operation ∨ by the least common multiple. This lattice is isomorphic to the
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical ...
of the
lattice of subgroups In mathematics, the lattice of subgroups of a group G is the lattice whose elements are the subgroups of G, with the partial order relation being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their uni ...
of the infinite cyclic group \mathbb.


See also

*
Arithmetic functions In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function ''f''(''n'') whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their ...
* Euclidean algorithm *
Fraction (mathematics) A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
* Table of divisors — A table of prime and non-prime divisors for 1–1000 * Table of prime factors — A table of prime factors for 1–1000 * Unitary divisor


Notes


References

* *
Richard K. Guy Richard Kenneth Guy (30 September 1916 – 9 March 2020) was a British mathematician. He was a professor in the Department of Mathematics at the University of Calgary. He is known for his work in number theory, geometry, recreational mathema ...
, ''Unsolved Problems in Number Theory'' (3rd ed),
Springer Verlag Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 i ...
, 2004 ; section B. * * * * Øystein Ore, Number Theory and its History, McGraw–Hill, NY, 1944 (and Dover reprints). * {{Fractions and ratios Elementary number theory Division (mathematics)