Disquisitiones Arithmeticae
   HOME

TheInfoList



OR:

The (
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
for "Arithmetical Investigations") is a textbook of
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777 ...
written in Latin by
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
in 1798 when Gauss was 21 and first published in 1801 when he was 24. It is notable for having had a revolutionary impact on the field of number theory as it not only made the field truly rigorous and systematic but also paved the path for modern number theory. In this book Gauss brought together and reconciled results in number theory obtained by mathematicians such as
Fermat Pierre de Fermat (; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he i ...
,
Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
, Lagrange, and Legendre and added many profound and original results of his own.


Scope

The ''Disquisitiones'' covers both
elementary number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
and parts of the area of mathematics now called
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
. Gauss did not explicitly recognize the concept of a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
, which is central to
modern algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathe ...
, so he did not use this term. His own title for his subject was Higher Arithmetic. In his Preface to the ''Disquisitiones'', Gauss describes the scope of the book as follows: Gauss also writes, "When confronting many difficult problems, derivations have been suppressed for the sake of brevity when readers refer to this work." ("Quod, in pluribus quaestionibus difficilibus, demonstrationibus syntheticis usus sum, analysinque per quam erutae sunt suppressi, imprimis brevitatis studio tribuendum est, cui quantum fieri poterat consulere oportebat")


Contents

The book is divided into seven sections:
  1. Congruent Congruence may refer to: Mathematics * Congruence (geometry), being the same size and shape * Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure * In mod ...
    Numbers in General
  2. Congruences of the First Degree
  3. Residues of Powers
  4. Congruences of the Second Degree
  5. Forms and
    Indeterminate Equations In mathematics, particularly in algebra, an indeterminate equation is an equation for which there is more than one solution. For example, the equation ax + by =c is a simple indeterminate equation, as is x^2=1. Indeterminate equations cannot be solv ...
    of the Second Degree
  6. Various Applications of the Preceding Discussions
  7. Equations Defining Sections of a Circle
These sections are subdivided into 366 numbered items, which state a theorem with proof or otherwise develop a remark or thought. Sections I to III are essentially a review of previous results, including
Fermat's little theorem Fermat's little theorem states that if ''p'' is a prime number, then for any integer ''a'', the number a^p - a is an integer multiple of ''p''. In the notation of modular arithmetic, this is expressed as : a^p \equiv a \pmod p. For example, if = ...
,
Wilson's theorem In algebra and number theory, Wilson's theorem states that a natural number ''n'' > 1 is a prime number if and only if the product of all the positive integers less than ''n'' is one less than a multiple of ''n''. That is (using the notations of m ...
and the existence of primitive roots. Although few of the results in these sections are original, Gauss was the first mathematician to bring this material together in a systematic way. He also realized the importance of the property of unique
factorization In mathematics, factorization (or factorisation, see American and British English spelling differences#-ise, -ize (-isation, -ization), English spelling differences) or factoring consists of writing a number or another mathematical object as a p ...
(assured by the
fundamental theorem of arithmetic In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the ord ...
, first studied by
Euclid Euclid (; grc-gre, Wikt:Εὐκλείδης, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Euclid's Elements, Elements'' trea ...
), which he restates and proves using modern tools. From Section IV onward, much of the work is original. Section IV develops a proof of
quadratic reciprocity In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard st ...
; Section V, which takes up over half of the book, is a comprehensive analysis of binary and ternary
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a ...
s. Section VI includes two different
primality test A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whet ...
s. Finally, Section VII is an analysis of
cyclotomic polynomials In mathematics, the ''n''th cyclotomic polynomial, for any positive integer ''n'', is the unique irreducible polynomial with integer coefficients that is a divisor of x^n-1 and is not a divisor of x^k-1 for any Its roots are all ''n''th primit ...
, which concludes by giving the criteria that determine which regular
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two toge ...
s are constructible, i.e., can be constructed with a compass and unmarked straightedge alone. Gauss started to write an eighth section on higher-order congruences, but did not complete it, and it was published separately after his death with the title ''Disquisitiones generales de congruentiis'' (Latin: 'General Investigations on Congruences'). In it Gauss discussed congruences of arbitrary degree, attacking the problem of general congruences from a standpoint closely related to that taken later by
Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
, Galois, and
Emil Artin Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing lar ...
. The treatise paved the way for the theory of function fields over a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
of constants. Ideas unique to that treatise are clear recognition of the importance of the
Frobenius morphism In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class which includes finite fields. The endomorphism m ...
, and a version of
Hensel's lemma In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number , then this root can be ''lifted'' to ...
. The ''Disquisitiones'' was one of the last mathematical works written in scholarly
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
. An English translation was not published until 1965.


Importance

Before the ''Disquisitiones'' was published, number theory consisted of a collection of isolated theorems and conjectures. Gauss brought the work of his predecessors together with his own original work into a systematic framework, filled in gaps, corrected unsound proofs, and extended the subject in numerous ways. The logical structure of the ''Disquisitiones'' (
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of th ...
statement followed by proof, followed by
corollaries In mathematics and logic, a corollary ( , ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another ...
) set a standard for later texts. While recognising the primary importance of logical proof, Gauss also illustrates many theorems with numerical examples. The ''Disquisitiones'' was the starting point for other 19th-century European mathematicians, including
Ernst Kummer Ernst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician. Skilled in applied mathematics, Kummer trained German army officers in ballistics; afterwards, he taught for 10 years in a '' gymnasium'', the German equivalent of ...
,
Peter Gustav Lejeune Dirichlet Johann Peter Gustav Lejeune Dirichlet (; 13 February 1805 – 5 May 1859) was a German mathematician who made deep contributions to number theory (including creating the field of analytic number theory), and to the theory of Fourier series and ...
and
Richard Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
. Many of Gauss's annotations are in effect announcements of further research of his own, some of which remained unpublished. They must have appeared particularly cryptic to his contemporaries; they can now be read as containing the germs of the theories of
L-function In mathematics, an ''L''-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An ''L''-series is a Dirichlet series, usually convergent on a half-plane, that may give ris ...
s and
complex multiplication In mathematics, complex multiplication (CM) is the theory of elliptic curves ''E'' that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible wh ...
, in particular. The ''Disquisitiones'' continued to exert influence in the 20th century. For example, in section V, article 303, Gauss summarized his calculations of class numbers of proper primitive binary quadratic forms, and conjectured that he had found all of them with class numbers 1, 2, and 3. This was later interpreted as the determination of imaginary quadratic number fields with even discriminant and class number 1, 2, and 3, and extended to the case of odd discriminant. Sometimes called the
class number problem In mathematics, the Gauss class number problem (for imaginary quadratic fields), as usually understood, is to provide for each ''n'' ≥ 1 a complete list of imaginary quadratic fields \mathbb(\sqrt) (for negative integers ''d'') having c ...
, this more general question was eventually confirmed in 1986 (the specific question Gauss asked was confirmed by
Landau Landau ( pfl, Landach), officially Landau in der Pfalz, is an autonomous (''kreisfrei'') town surrounded by the Südliche Weinstraße ("Southern Wine Route") district of southern Rhineland-Palatinate, Germany. It is a university town (since 1990 ...
in 1902 for class number one). In section VII, article 358, Gauss proved what can be interpreted as the first nontrivial case of the
Riemann hypothesis In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in ...
for curves over finite fields (the Hasse–Weil theorem).


Bibliography

* Carl Friedrich Gauss, tr. Arthur A. Clarke,Not to be confused with Arthur C. Clarke, the science fiction author. S.J.: ''Disquisitiones Arithmeticae'', Yale University Press, 1965,
''Disquisitiones Arithmeticae''
(original text in Latin) *


References


External links

* * (Latin original) (first ed. 1801) (ed. 1870) * (French translation) (ed. 1807) {{Authority control 1798 non-fiction books 1801 non-fiction books 1801 in science Latin prose texts Mathematics books Carl Friedrich Gauss Number theory 19th-century Latin books