HOME

TheInfoList



OR:

Ion mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized molecules in the gas phase based on their mobility in a carrier buffer gas. Though heavily employed for military or security purposes, such as detecting drugs and explosives, the technique also has many laboratory analytical applications, including the analysis of both small and large biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
,
gas chromatography Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substanc ...
or
high-performance liquid chromatography High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify each component in a mixture. It relies on pumps to pa ...
in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including
volatile organic compound Volatile organic compounds (VOCs) are organic compounds that have a high vapour pressure at room temperature. High vapor pressure correlates with a low boiling point, which relates to the number of the sample's molecules in the surrounding air, a ...
(VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. Systems operated at higher pressure (i.e. atmospheric conditions, 1 atm or 1013 hPa) are often accompanied by elevated temperature (above 100 °C), while lower pressure systems (1-20 hPa) do not require heating.


History

IMS was first developed primarily by
Earl W. McDaniel Earl W. (Wadsworth) McDaniel (April 15, 1926 – May 4, 1997) was a Regents Professor of Physics at the Georgia Institute of Technology and the Georgia Tech Research Institute and is most noted for his contributions to the field of ion mobility ...
of
Georgia Institute of Technology The Georgia Institute of Technology, commonly referred to as Georgia Tech or, in the state of Georgia, as Tech or The Institute, is a public research university and institute of technology in Atlanta, Georgia. Established in 1885, it is part ...
in the 1950s and 1960s when he used drift cells with low applied electric fields to study gas phase ion mobilities and reactions. In the following decades, he coupled his new technique with a magnetic-sector mass spectrometer, with others also utilizing his techniques in new ways. IMS cells have since been attached to many other mass spectrometers, gas chromatographs and high-performance liquid chromatography setups. IMS is a widely used technique, and improvements and other uses are continually being developed.


Applications

Perhaps ion mobility spectrometry's greatest strength is the speed at which separations occur—typically on the order of tens of milliseconds. This feature combined with its ease of use, relatively high sensitivity, and highly compact design have allowed IMS as a commercial product to be used as a routine tool for the field detection of
explosive An explosive (or explosive material) is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An expl ...
s,
drugs A drug is any chemical substance that causes a change in an organism's physiology or psychology when consumed. Drugs are typically distinguished from food and substances that provide nutritional support. Consumption of drugs can be via inhalati ...
, and chemical weapons. Major manufacturers of IMS screening devices used in airports are Morpho and Smiths Detection. Smiths purchased Morpho Detection in 2017 and subsequently had to legally divest ownership of the Trace side of the business miths have Trace Products which was sold on to Rapiscan Systems in mid 2017. The products are listed under ETD Itemisers. The latest model is a non-radiation 4DX. In the pharmaceutical industry IMS is used in
cleaning validation Cleaning validation is the methodology used to assure that a cleaning process removes chemical and microbial residues of the active, inactive or detergent ingredients of the product manufactured in a piece of equipment, the cleaning aids utilized i ...
s, demonstrating that reaction vessels are sufficiently clean to proceed with the next batch of pharmaceutical product. IMS is much faster and more accurate than
HPLC High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify each component in a mixture. It relies on pumps to p ...
and total organic carbon methods previously used. IMS is also used for analyzing the composition of drugs produced, thereby finding a place in quality assurance and control. As a research tool ion mobility is becoming more widely used in the analysis of biological materials, specifically,
proteomics Proteomics is the large-scale study of proteins. Proteins are vital parts of living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. I ...
and
metabolomics Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates, and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprin ...
. For example, IMS-MS using
MALDI In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of b ...
as the ionization method has helped make advances in proteomics, providing faster high-resolution separations of protein pieces in analysis. Moreover, it is a really promising tool for glycomics, as rotationally averaged collision cross section (CCS) values can be obtained. CCS values are important distinguishing characteristics of ions in the gas phase, and in addition to the empirical determinations it can also be calculated computationally when the 3D structure of the molecule is known. This way, adding CCS values of glycans and their fragments to databases will increase structural identification confidence and accuracy. Outside of laboratory purposes, IMS has found great usage as a detection tool for hazardous substances. More than 10,000 IMS devices are in use worldwide in airports, and the US Army has more than 50,000 IMS devices. In industrial settings, uses of IMS include checking equipment cleanliness and detecting emission contents, such as determining the amount of hydrochloric and hydrofluoric acid in a stack gas from a process. It is also applied in industrial purposes to detect harmful substances in air. In
metabolomics Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates, and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprin ...
the IMS is used to detect
lung cancer Lung cancer, also known as lung carcinoma (since about 98–99% of all lung cancers are carcinomas), is a malignant lung tumor characterized by uncontrolled cell growth in tissues of the lung. Lung carcinomas derive from transformed, mali ...
,
Chronic obstructive pulmonary disease Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease characterized by long-term respiratory symptoms and airflow limitation. The main symptoms include shortness of breath and a cough, which may or may not produce ...
,
sarcoidosis Sarcoidosis (also known as ''Besnier-Boeck-Schaumann disease'') is a disease involving abnormal collections of inflammatory cells that form lumps known as granulomata. The disease usually begins in the lungs, skin, or lymph nodes. Less commonly af ...
, potential rejections after
lung transplantation Lung transplantation, or pulmonary transplantation, is a surgical procedure in which one or both lungs are replaced by lungs from a donor. Donor lungs can be retrieved from a living or deceased donor. A living donor can only donate one lung lobe. ...
and relations to
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
within the
lung The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side of ...
(see
breath gas analysis Breath gas analysis is a method for gaining information on the clinical state of an individual by monitoring volatile organic compounds (VOCs) present in the exhaled breath. Exhaled breath is naturally produced by the human body through expiration ...
).


Ion mobility

The
physical quantity A physical quantity is a physical property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ' Numerical value ' and a ' Unit '. For exam ...
ion mobility ''K'' is defined as the proportionality factor between an ion's drift velocity ''vd'' in a gas and an electric field of strength ''E''. ::: v_d=KE Ion mobilities are commonly reported as ''reduced mobilities'', correcting to standard gas density ''n0'', which can be expressed in standard temperature ''T0'' = 273 K and standard pressure ''p0'' = 1013 hPa. This does not correct for other effects than the change in gas density and the reduced ion mobility is therefore still temperature dependent. ::: K_0 = K \frac = K \ \frac \ \frac The ion mobility ''K'' can, under a variety of assumptions, be calculated by the Mason-Schamp equation. ::: K = \frac \sqrt \frac where ''Q'' is the ion charge, ''n'' is the drift gas
number density The number density (symbol: ''n'' or ''ρ''N) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric num ...
, ''μ'' is the reduced mass of the ion and the drift gas molecules, ''k'' is
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constan ...
, ''T'' is the drift gas
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
, and ''σ'' is the collision cross section between the ion and the drift gas molecules. Often, ''N'' is used instead of ''n'' for the drift gas number density and ''Ω'' instead ''σ'' for the ion-neutral collision cross section. This relation holds approximately at a low electric field limit, where the ratio of ''E/N'' is small and thus the thermal energy of the ions is much greater than the energy gained from the electric field between collisions. With these ions having similar energies as the buffer gas molecules, diffusion forces dominate ion motion in this case. The ratio ''E/N'' is typically given in Townsends (Td) and the transition between low- and high-field conditions is typically estimated to occur between 2 Td and 10 Td. When low-field conditions no longer prevail, the ion mobility itself becomes a function of the electric field strength which is usually described empirically through the so-called alpha function. ::: K\left(\frac\right)=K(0)\,\left +\alpha\left(\frac\right)\rightK(0)\,\left +\alpha_2\left[\frac\right2+\alpha_4\left[\frac\right.html" ;"title="frac\right.html" ;"title="+\alpha_2\left[\frac\right">+\alpha_2\left[\frac\right2+\alpha_4\left[\frac\right">frac\right.html" ;"title="+\alpha_2\left[\frac\right">+\alpha_2\left[\frac\right2+\alpha_4\left[\frac\right4+...\right]


Ionization

The molecules of the sample need to be ionization, ionized, usually by corona discharge, atmospheric pressure photoionization (APPI), electrospray ionization (ESI), or
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
atmospheric-pressure chemical ionization (R-APCI) source, e.g. a small piece of 63 Ni or 241 Am, similar to the one used in ionization
smoke detector A smoke detector is a device that senses smoke, typically as an indicator of fire. Smoke detectors are usually housed in plastic enclosures, typically shaped like a disk about in diameter and thick, but shape and size vary. Smoke can be detecte ...
s. ESI and
MALDI In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of b ...
techniques are commonly used when IMS is paired with mass spectrometry. Doping materials are sometimes added to the drift gas for ionization selectivity. For example, acetone can be added for chemical warfare agent detection, chlorinated solvents added for explosives, and nicotinamide added for drugs detection.


Analyzers

Ion mobility spectrometers exist based on various principles, optimized for different applications. A review from 2014 lists eight different ion mobility spectrometry concepts.


Drift tube ion mobility spectrometry

500px, A drift tube ion mobility spectrometer. Drift tube ion mobility spectrometry (DTIMS) measures how long a given ion takes to traverse a given length in a uniform
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
through a given atmosphere. In specified intervals, a sample of the ions is let into the drift region; the gating mechanism is based on a charged electrode working in a similar way as the control grid in
triode A triode is an electronic amplifying vacuum tube (or ''valve'' in British English) consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's ...
s works for electrons. For precise control of the ion pulse width admitted to the drift tube, more complex gating systems such as a Bradbury-Nielsen or a Field Switching Shutter are employed. Once in the drift tube, ions are subjected to a homogeneous electric field ranging from a few volts per centimeter up to many hundreds of volts per centimeter. This electric field then drives the ions through the drift tube where they interact with the neutral drift molecules contained within the system and separate based on the
ion mobility Ion mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized molecules in the gas phase based on their mobility in a carrier buffer gas. Though heavily employed for military or security purposes, such as detect ...
, arriving at the detector for measurement. Ions are recorded at the detector in order from the fastest to the slowest, generating a response signal characteristic for the chemical composition of the measured sample. The ion mobility ''K'' can then be experimentally determined from the drift time ''tD'' of an ion traversing within a homogeneous electric field the potential difference ''U'' in the drift length ''L''. ::: K = \frac A drift tube's resolving power ''RP'' can, when diffusion is assumed as the sole contributor to peak broadening, be calculated as ::: R_P= \frac= \sqrt where ''tD'' is the ion drift time, ''ΔtD'' is the Full width at half maximum, L is the tube length, E is the electric field strength, Q is the ion charge, k is Boltzmann's constant, and T is the drift gas temperature. Ambient pressure methods allow for higher resolving power and greater separation selectivity due to a higher rate of ion-molecule interactions and is typically used for stand-alone devices, as well as for detectors for gas, liquid, and supercriticial fluid chromatography. As shown above, the resolving power depends on the total voltage drop the ion traverses. Using a drift voltage of 25 kV in a 15 cm long atmospheric pressure drift tube, a resolving power above 250 is achievable even for small, single charged ions. This is sufficient to achieve separation of some isotopologues based on their difference in reduced mass ''μ.''


Low pressure drift tube

Reduced pressure drift tubes operate using the same principles as their atmospheric pressure counterparts, but at drift gas pressure of only a few torr. Due to the vastly reduced number of ion-neutral interactions, much longer drift tubes or much faster ion shutters are necessary to achieve the same resolving power. However, the reduced pressure operation offers several advantages. First, it eases interfacing the IMS with mass spectrometry. Second, at lower pressures, ions can be stored for injection from an ion trap and re-focussed radially during and after the separation. Third, high values of ''E/N'' can be achieved, allowing for direct measurement of ''K''(''E/N'') over a wide range.


Travelling wave

Though drift electric fields are normally uniform, non-uniform drift fields can also be used. One example is the travelling wave IMS, which is a low pressure drift tube IMS where the electric field is only applied in a small region of the drift tube. This region then moves along the drift tube, creating a wave pushing the ions towards the detector, removing the need for a high total drift voltage. A direct determination of collision cross sections (CCS) is not possible, using TWIMS. Calibrants can help circumvent this major drawback, however, these should be matched for size, charge and chemical class of the given analyte. An especially noteworthy variant is the "SUPER" IMS, which combines ion trapping by the so-called structures for lossless ion manipulations (SLIM) with several passes through the same drift region to achieve extremely high resolving powers.


Trapped ion mobility spectrometry

In trapped ion mobility spectrometry (TIMS), ions are held stationary (or trapped) in a flowing buffer gas by an axial electric field gradient (EFG) profile while the application of radio frequency (rf) potentials results in trapping in the radial dimension. TIMS operates in the pressure range of 2 to 5 hPa and replaces the ion funnel found in the source region of modern mass spectrometers. It can be coupled with nearly any mass analyzer through either the standard mode of operation for beam-type instruments or selective accumulation mode (SA-TIMS) when used with trapping mass spectrometry (MS) instruments. Effectively, the drift cell is prolonged by the ion motion created through the gas flow. Thus, TIMS devices do neither require large size nor high voltage in order to achieve high resolution, for instance achieving over 250 resolving power from a 4.7 cm device through the use of extended separation times. However, the resolving power strongly depends on the ion mobility and decreases for more mobile ions. In addition, TIMS can be capable of higher sensitivity than other ion mobility systems because no grids or shutters exist in the ion path, improving ion transmission both during ion mobility experiments and while operating in a transparent MS only mode.


High-field asymmetric waveform ion mobility spectrometry

DMS (
differential mobility spectrometer Differential may refer to: Mathematics * Differential (mathematics) comprises multiple related meanings of the word, both in calculus and differential geometry, such as an infinitesimal change in the value of a function * Differential algebra * ...
) or FAIMS ( field asymmetric ion mobility spectrometer) make use of the dependence of the ion mobility ''K'' on the electric field strength ''E'' at high electric fields. Ions are transported through the device by the drift gas flow and subjected to different field strengths in orthogonal direction for different amounts of time. Ions are deflected towards the walls of the analyzer based on the change of their mobility. Thereby only ions with a certain mobility dependence can pass the thus created filter


Differential mobility analyzer

A differential mobility analyzer (DMA) makes use of a fast gas stream perpendicular to the electric field. Thereby ions of different mobilities undergo different trajectories. This type of IMS corresponds to the sector instruments in
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
. They also work as a scannable filter. Examples include the differential mobility detector first commercialized by Varian in the CP-4900 MicroGC. Aspiration IMS operates with open-loop circulation of sampled air. Sample flow is passed via ionization chamber and then enters to measurement area where the ions are deflected into one or more measuring electrodes by perpendicular
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
which can be either static or varying. The output of the sensor is characteristic of the ion mobility distribution and can be used for detection and identification purposes. A DMA can separate charged
aerosol An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be natural or anthropogenic. Examples of natural aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of anthropogen ...
particles or ions according to their mobility in an
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
prior to their detection, which can be done with several means, including electrometers or the more sophisticated mass spectrometers.


Drift gas

The drift gas composition is an important parameter for the IMS instrument design and resolution. Often, different drift gas compositions can allow for the separation of otherwise overlapping peaks. Elevated gas temperature assists in removing ion clusters that may distort experimental measurements.Bengt Nolting, ''Methods in Modern Biophysics'', Springer Verlag, 2005, Gary Eiceman & Zeev Karpas, ''Ion Mobility Spectrometry'', CRC Press, 2005,


Detector

Often the detector is a simple
Faraday plate A Faraday cup is a metal (conductive) cup designed to catch charged particles in vacuum. The resulting current can be measured and used to determine the number of ions or electrons hitting the cup. The Faraday cup was named after Michael Faraday w ...
coupled to a transimpedance amplifier, however, more advanced ion mobility instruments are
coupled ''Coupled'' is an American dating game show that aired on Fox from May 17 to August 2, 2016. It was hosted by television personality, Terrence J and created by Mark Burnett, of '' Survivor'', ''The Apprentice'', '' Are You Smarter Than a 5th G ...
with
mass spectrometer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
s in order to obtain both size and mass information simultaneously. It is noteworthy that the detector influences the optimum operating conditions for the ion mobility experiment.


Combined methods

IMS can be combined with other separation techniques.


Gas chromatography

When IMS is coupled with gas chromatography, common sample introduction is with the GC capillary column directly connected to the IMS setup, with molecules ionized as they elute from GC. A similar technique is commonly used for
HPLC High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify each component in a mixture. It relies on pumps to p ...
. A novel design for corona discharge ionization ion mobility spectrometry (CD–IMS) as a detector after capillary gas chromatography has been produced in 2012. In this design, a hollow needle was used for corona discharge creation and the effluent was entered into the ionization region on the upstream side of the corona source. In addition to the practical conveniences in coupling the capillary to IMS cell, this direct axial interfacing helps us to achieve a more efficient ionization, resulting in higher sensitivity. When used with GC, a differential mobility analyzer is often called a differential mobility detector (DMD). A DMD is often a type of microelectromechanical system, radio frequency modulated ion mobility spectrometry (MEMS RF-IMS) device. Though small, it can fit into portable units, such as transferable gas chromatographs or drug/explosives sensors. For instance, it was incorporated by Varian in its CP-4900 DMD MicroGC, and by Thermo Fisher in its EGIS Defender system, designed to detect narcotics and explosives in transportation or other security applications.


Liquid chromatography

Coupled with LC and MS, IMS has become widely used to analyze biomolecules, a practice heavily developed by
David E. Clemmer David E. Clemmer (February 23, 1965, Alamosa, Colorado) is an analytical chemist and the Distinguished Professor and Robert and Marjorie Mann Chair of Chemistry at Indiana University Bloomington, Indiana University in Bloomington, Indiana, where he ...
, now at
Indiana University (Bloomington) Indiana University Bloomington (IU Bloomington, Indiana University, IU, or simply Indiana) is a public research university in Bloomington, Indiana. It is the flagship campus of Indiana University and, with over 40,000 students, its largest camp ...
.


Mass spectrometry

When IMS is used with mass spectrometry, ion mobility spectrometry-mass spectrometry offers many advantages, including better signal to noise, isomer separation, and charge state identification. IMS has commonly been attached to several mass spec analyzers, including quadropole, time-of-flight, and Fourier transform cyclotron resonance.


Dedicated software

Ion mobility mass spectrometry is a rather recently popularized gas phase ion analysis technique. As such there is not a large software offering to display and analyze ion mobility mass spectrometric data, apart from the software packages that are shipped along with the instruments. ProteoWizard, OpenMS, and msXpertSuite are free software according to the OpenSourceInitiative definition. While ProteoWizard and OpenMS have features to allow spectrum scrutiny, those software packages do not provide combination features. In contrast, msXpertSuite features the ability to combine spectra according to various criteria: retention time, m/z range, drift time range, for example. msXpertSuite thus more closely mimicks the software that usually comes bundled with the mass spectrometer.


See also

*
Electrical mobility Electrical mobility is the ability of charged particles (such as electrons or protons) to move through a medium in response to an electric field that is pulling them. The separation of ions according to their mobility in gas phase is called ion ...
* Viehland-Mason Theory * Explosive detection


References


Bibliography

* * * *


External links

* {{Analytical chemistry Mass spectrometry Explosive detection