HOME

TheInfoList



OR:

In mathematics, an uncountable set (or uncountably infinite set) is an
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only s ...
that contains too many elements to be
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
. The uncountability of a set is closely related to its
cardinal number In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. T ...
: a set is uncountable if its cardinal number is larger than that of the set of all
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
s.


Characterizations

There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold: * There is no injective function (hence no bijection) from ''X'' to the set of natural numbers. * ''X'' is nonempty and for every ω-
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no
surjective function In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of ...
from the natural numbers to ''X''. * The cardinality of ''X'' is neither finite nor equal to \aleph_0 (
aleph-null In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named af ...
, the cardinality of the
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
s). * The set ''X'' has cardinality strictly greater than \aleph_0. The first three of these characterizations can be proven equivalent in
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...
without the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, but the equivalence of the third and fourth cannot be proved without additional choice principles.


Properties

* If an uncountable set ''X'' is a subset of set ''Y'', then ''Y'' is uncountable.


Examples

The best known example of an uncountable set is the set R of all
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s;
Cantor's diagonal argument In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a m ...
shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
s of
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
s and the set of all subsets of the set of natural numbers. The cardinality of R is often called the cardinality of the continuum, and denoted by \mathfrak , or 2^, or \beth_1 ( beth-one). The Cantor set is an uncountable subset of R. The Cantor set is a fractal and has
Hausdorff dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was first introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of ...
greater than zero but less than one (R has dimension one). This is an example of the following fact: any subset of R of Hausdorff dimension strictly greater than zero must be uncountable. Another example of an uncountable set is the set of all
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
s from R to R. This set is even "more uncountable" than R in the sense that the cardinality of this set is \beth_2 ( beth-two), which is larger than \beth_1. A more abstract example of an uncountable set is the set of all countable ordinal numbers, denoted by Ω or ω1. The cardinality of Ω is denoted \aleph_1 ( aleph-one). It can be shown, using the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, that \aleph_1 is the ''smallest'' uncountable cardinal number. Thus either \beth_1, the cardinality of the reals, is equal to \aleph_1 or it is strictly larger.
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of ...
was the first to propose the question of whether \beth_1 is equal to \aleph_1. In 1900, David Hilbert posed this question as the first of his 23 problems. The statement that \aleph_1 = \beth_1 is now called the
continuum hypothesis In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to ...
, and is known to be independent of the Zermelo–Fraenkel axioms for
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
(including the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
).


Without the axiom of choice

Without the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, there might exist cardinalities incomparable to \aleph_0 (namely, the cardinalities of
Dedekind-finite In mathematics, a set ''A'' is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset ''B'' of ''A'' is equinumerous to ''A''. Explicitly, this means that there exists a bijective function from ''A'' ont ...
infinite sets). Sets of these cardinalities satisfy the first three characterizations above, but not the fourth characterization. Since these sets are not larger than the natural numbers in the sense of cardinality, some may not want to call them uncountable. If the axiom of choice holds, the following conditions on a cardinal \kappa are equivalent: *\kappa \nleq \aleph_0; *\kappa > \aleph_0; and *\kappa \geq \aleph_1, where \aleph_1 = , \omega_1 , and \omega_1 is the least
initial ordinal In a written or published work, an initial capital, also referred to as a drop capital or simply an initial cap, initial, initcapital, initcap or init or a drop cap or drop, is a letter at the beginning of a word, a chapter, or a paragraph that ...
greater than \omega. However, these may all be different if the axiom of choice fails. So it is not obvious which one is the appropriate generalization of "uncountability" when the axiom fails. It may be best to avoid using the word in this case and specify which of these one means.


See also

*
Aleph number In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named a ...
*
Beth number In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers (also known as transfinite numbers), conventionally written \beth_0,\ \beth_1,\ \beth_2,\ \beth_3,\ \dots, where \beth is the second H ...
* First uncountable ordinal * Injective function


References


Bibliography

* Halmos, Paul, '' Naive Set Theory''. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. (Springer-Verlag edition). Reprinted by Martino Fine Books, 2011. (Paperback edition). *


External links


Proof that R is uncountable
{{Set theory Basic concepts in infinite set theory Infinity Cardinal numbers