HOME

TheInfoList



OR:

In mathematics, a real closed field is a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''F'' that has the same
first-order In mathematics and other formal sciences, first-order or first order most often means either: * "linear" (a polynomial of degree at most one), as in first-order approximation and other calculus uses, where it is contrasted with "polynomials of hig ...
properties as the field of real numbers. Some examples are the field of real numbers, the field of real
algebraic number An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the p ...
s, and the field of
hyperreal number In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains number ...
s.


Definitions

A real closed field is a field ''F'' in which any of the following equivalent conditions is true: #''F'' is
elementarily equivalent In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often ...
to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in ''F'' if and only if it is true in the reals. #There is a total order on ''F'' making it an ordered field such that, in this ordering, every positive element of ''F'' has a square root in ''F'' and any polynomial of odd degree with
coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves ...
s in ''F'' has at least one root in ''F''. #''F'' is a formally real field such that every polynomial of odd degree with coefficients in ''F'' has at least one root in ''F'', and for every element ''a'' of ''F'' there is ''b'' in ''F'' such that ''a'' = ''b''2 or ''a'' = −''b''2. #''F'' is not
algebraically closed In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
, but its
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ( ...
is a finite extension. #''F'' is not algebraically closed but the field extension F(\sqrt\,) is algebraically closed. #There is an ordering on ''F'' that does not extend to an ordering on any proper
algebraic extension In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, if every element of is a root of a non-zero polynomial with coefficients in . A field ex ...
of ''F''. #''F'' is a formally real field such that no proper algebraic extension of ''F'' is formally real. (In other words, the field is maximal in an algebraic closure with respect to the property of being formally real.) #There is an ordering on ''F'' making it an ordered field such that, in this ordering, the intermediate value theorem holds for all polynomials over ''F'' with degree ''≥'' 0. # ''F'' is a weakly o-minimal ordered field. If ''F'' is an ordered field, the Artin–Schreier theorem states that ''F'' has an algebraic extension, called the real closure ''K'' of ''F'', such that ''K'' is a real closed field whose ordering is an extension of the given ordering on ''F'', and is unique
up to Two mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' with respect to ''R'' a ...
a unique isomorphism of fields identical on ''F''Rajwade (1993) pp. 222–223 (note that every ring homomorphism between real closed fields automatically is order preserving, because ''x'' ≤ ''y'' if and only if ∃''z'' : ''y'' = ''x'' + ''z''2). For example, the real closure of the ordered field of rational numbers is the field \mathbb_\mathrm of real algebraic numbers. The theorem is named for Emil Artin and Otto Schreier, who proved it in 1926. If (''F'', ''P'') is an ordered field, and ''E'' is a Galois extension of ''F'', then by Zorn's Lemma there is a maximal ordered field extension (''M'', ''Q'') with ''M'' a subfield of ''E'' containing ''F'' and the order on ''M'' extending ''P''. This ''M'', together with its ordering ''Q'', is called the relative real closure of (''F'', ''P'') in ''E''. We call (''F'', ''P'') real closed relative to ''E'' if ''M'' is just ''F''. When ''E'' is the algebraic closure of ''F'' the relative real closure of ''F'' in ''E'' is actually the real closure of ''F'' described earlier.Efrat (2006) p. 177 If ''F'' is a field (no ordering compatible with the field operations is assumed, nor is it assumed that ''F'' is orderable) then ''F'' still has a real closure, which may not be a field anymore, but just a
real closed ring In mathematics, a real closed ring (RCR) is a commutative ring ''A'' that is a subring of a product of real closed fields, which is closed under continuous semi-algebraic functions defined over the integers. Examples of real closed rings Since ...
. For example, the real closure of the field \mathbb(\sqrt 2) is the
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
\mathbb_\mathrm \!\times \mathbb_\mathrm (the two copies correspond to the two orderings of \mathbb(\sqrt 2)). On the other hand, if \mathbb(\sqrt 2) is considered as an ordered subfield of \mathbb, its real closure is again the field \mathbb_\mathrm.


Decidability and quantifier elimination

The language of real closed fields \mathcal_\text includes symbols for the operations of addition and multiplication, the constants 0 and 1, and the order relation (as well as equality, if this is not considered a logical symbol). In this language, the (first-order) theory of real closed fields, \mathcal_\text, consists of the following: * the
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s of ordered fields; * the axiom asserting that every positive number has a square root; * for every odd number d, the axiom asserting that all polynomials of degree d have at least one root. All of the above axioms can be expressed in
first-order logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantifi ...
(i.e. quantification ranges only over elements of the field). Tarski proved () that \mathcal_\text is
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
, meaning that for any \mathcal_\text-sentence, it can be proven either true or false from the above axioms. Furthermore, \mathcal_\text is decidable, meaning that there is an
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
to decide the truth or falsity of any such sentence. The Tarski–Seidenberg theorem extends this result to decidable quantifier elimination. That is, there is an algorithm that, given any \mathcal_\text- formula, which may contain free variables, produces an equivalent quantifier-free formula in the same free variables, where ''equivalent'' means that the two formulas are true for exactly the same values of the variables. The Tarski–Seidenberg theorem is an extension of the decidability theorem, as it can be easily checked whether a quantifier-free formula without free variables is ''true'' or ''false''. This theorem can be further extended to the following ''projection theorem''. If is a real closed field, a formula with free variables defines a subset of , the set of the points that satisfy the formula. Such a subset is called a
semialgebraic set In mathematics, a semialgebraic set is a subset ''S'' of ''Rn'' for some real closed field ''R'' (for example ''R'' could be the field of real numbers) defined by a finite sequence of polynomial equations (of the form P(x_1,...,x_n) = 0) and inequ ...
. Given a subset of variables, the ''projection'' from to is the
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
that maps every -tuple to the -tuple of the components corresponding to the subset of variables. The projection theorem asserts that a projection of a semialgebraic set is a semialgebraic set, and that there is an algorithm that, given a quantifier-free formula defining a semialgebraic set, produces a quantifier-free formula for its projection. In fact, the projection theorem is equivalent to quantifier elimination, as the projection of a semialgebraic set defined by the formula is defined by :(\exists x) P(x,y), where and represent respectively the set of eliminated variables, and the set of kept variables. The decidability of a first-order theory of the real numbers depends dramatically on the primitive operations and functions that are considered (here addition and multiplication). Adding other functions symbols, for example, the sine or the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
, can provide undecidable theories; see Richardson's theorem and
Decidability of first-order theories of the real numbers In mathematical logic, a first-order language of the real numbers is the set of all well-formed sentences of first-order logic that involve universal and existential quantifiers and logical combinations of equalities and inequalities of expressio ...
.


Complexity of deciding 𝘛rcf

Tarski's original algorithm for quantifier elimination has nonelementary
computational complexity In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations ...
, meaning that no tower :2^ can bound the execution time of the algorithm if is the size of the input formula. The
cylindrical algebraic decomposition In mathematics, cylindrical algebraic decomposition (CAD) is a notion, and an algorithm to compute it, that are fundamental for computer algebra and real algebraic geometry. Given a set ''S'' of polynomials in R''n'', a cylindrical algebraic decomp ...
, introduced by George E. Collins, provides a much more practicable algorithm of complexity :d^ where is the total number of variables (free and bound), is the product of the degrees of the polynomials occurring in the formula, and is
big O notation Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Land ...
. Davenport and Heintz (1988) proved that this worst-case complexity is nearly optimal for quantifier elimination by producing a family of formulas of length , with quantifiers, and involving polynomials of constant degree, such that any quantifier-free formula equivalent to must involve polynomials of degree 2^ and length 2^, where \Omega(n) is big Ω notation. This shows that both the time complexity and the space complexity of quantifier elimination are intrinsically double exponential. For the decision problem, Ben-Or, Kozen, and Reif (1986) claimed to have proved that the theory of real closed fields is decidable in exponential space, and therefore in double exponential time, but their argument (in the case of more than one variable) is generally held as flawed; see Renegar (1992) for a discussion. For purely existential formulas, that is for formulas of the form : where stands for either or , the complexity is lower. Basu and
Roy Roy is a masculine given name and a family surname with varied origin. In Anglo-Norman England, the name derived from the Norman ''roy'', meaning "king", while its Old French cognate, ''rey'' or ''roy'' (modern ''roi''), likewise gave rise to ...
(1996) provided a well-behaved algorithm to decide the truth of such an existential formula with complexity of arithmetic operations and
polynomial space In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space. Formal definition If we denote by SPACE(''t''(''n'')), the set of all problems that can b ...
.


Order properties

A crucially important property of the real numbers is that it is an
Archimedean field In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typical ...
, meaning it has the Archimedean property that for any real number, there is an integer larger than it in
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
. An equivalent statement is that for any real number, there are integers both larger and smaller. Such real closed fields that are not Archimedean, are non-Archimedean ordered fields. For example, any field of
hyperreal number In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains number ...
s is real closed and non-Archimedean. The Archimedean property is related to the concept of
cofinality In mathematics, especially in order theory, the cofinality cf(''A'') of a partially ordered set ''A'' is the least of the cardinalities of the cofinal subsets of ''A''. This definition of cofinality relies on the axiom of choice, as it uses t ...
. A set ''X'' contained in an ordered set ''F'' is cofinal in ''F'' if for every ''y'' in ''F'' there is an ''x'' in ''X'' such that ''y'' < ''x''. In other words, ''X'' is an unbounded sequence in ''F''. The cofinality of ''F'' is the
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of the smallest cofinal set, which is to say, the size of the smallest cardinality giving an unbounded sequence. For example, natural numbers are cofinal in the reals, and the cofinality of the reals is therefore \aleph_0. We have therefore the following invariants defining the nature of a real closed field ''F'': * The cardinality of ''F''. * The cofinality of ''F''. To this we may add * The weight of ''F'', which is the minimum size of a dense subset of ''F''. These three cardinal numbers tell us much about the order properties of any real closed field, though it may be difficult to discover what they are, especially if we are not willing to invoke the generalized continuum hypothesis. There are also particular properties that may or may not hold: * A field ''F'' is complete if there is no ordered field ''K'' properly containing ''F'' such that ''F'' is dense in ''K''. If the cofinality of ''F'' is ''κ'', this is equivalent to saying
Cauchy sequence In mathematics, a Cauchy sequence (; ), named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite numbe ...
s indexed by ''κ'' are convergent in ''F''. * An ordered field ''F'' has the eta set property η''α'', for the
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least ...
''α'', if for any two subsets ''L'' and ''U'' of ''F'' of cardinality less than \aleph_\alpha such that every element of ''L'' is less than every element of ''U'', there is an element ''x'' in ''F'' with ''x'' larger than every element of ''L'' and smaller than every element of ''U''. This is closely related to the
model-theoretic In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the st ...
property of being a saturated model; any two real closed fields are η''α'' if and only if they are \aleph_\alpha-saturated, and moreover two η''α'' real closed fields both of cardinality \aleph_\alpha are
order isomorphic In the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be ...
.


The generalized continuum hypothesis

The characteristics of real closed fields become much simpler if we are willing to assume the generalized continuum hypothesis. If the continuum hypothesis holds, all real closed fields with
cardinality of the continuum In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \mathfrak c (lowercase fraktur "c") or , \mathb ...
and having the ''η''1 property are order isomorphic. This unique field ''Ϝ'' can be defined by means of an ultrapower, as \mathbb^/\mathbf, where M is a maximal ideal not leading to a field order-isomorphic to \mathbb. This is the most commonly used hyperreal number field in nonstandard analysis, and its uniqueness is equivalent to the continuum hypothesis. (Even without the continuum hypothesis we have that if the cardinality of the continuum is \aleph_\beta then we have a unique ''η''''β'' field of size ''η''''β''.) Moreover, we do not need ultrapowers to construct ''Ϝ'', we can do so much more constructively as the subfield of series with a
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
number of nonzero terms of the field \mathbb G of formal power series on a totally ordered
abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a grou ...
divisible group ''G'' that is an ''η''1 group of cardinality \aleph_1 . ''Ϝ'' however is not a complete field; if we take its completion, we end up with a field ''Κ'' of larger cardinality. ''Ϝ'' has the cardinality of the continuum, which by hypothesis is \aleph_1, ''Κ'' has cardinality \aleph_2, and contains ''Ϝ'' as a dense subfield. It is not an ultrapower but it ''is'' a hyperreal field, and hence a suitable field for the usages of nonstandard analysis. It can be seen to be the higher-dimensional analogue of the real numbers; with cardinality \aleph_2 instead of \aleph_1, cofinality \aleph_1 instead of \aleph_0, and weight \aleph_1 instead of \aleph_0, and with the ''η''1 property in place of the ''η''0 property (which merely means between any two real numbers we can find another).


Examples of real closed fields

* the real
algebraic numbers An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
* the
computable number In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive r ...
s * the
definable number Informally, a definable real number is a real number that can be uniquely specified by its description. The description may be expressed as a construction or as a formula of a formal language. For example, the positive square root of 2, \sqrt, ca ...
s * the real numbers * superreal numbers *
hyperreal number In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains number ...
s * the
Puiseux series In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series : \begin x^ &+ 2x^ + x^ + 2x^ + x^ + x^5 + \cdots\\ &=x^+ 2x^ + x^ + 2x^ + x^ + ...
with real coefficients * the surreal numbers


Notes


References

* * Basu, Saugata, Richard Pollack, and
Marie-Françoise Roy Marie-Françoise Roy (born 28 April 1950 in Paris) is a French mathematician noted for her work in real algebraic geometry. She has been Professor of Mathematics at the University of Rennes 1 since 1985 and in 2009 was made a ''Chevalier'' of the ...
(2003) "Algorithms in real algebraic geometry" in ''Algorithms and computation in mathematics''. Springer.
online version
* Michael Ben-Or, Dexter Kozen, and John Reif,
The complexity of elementary algebra and geometry
', Journal of Computer and Systems Sciences 32 (1986), no. 2, pp. 251–264. * Caviness, B F, and Jeremy R. Johnson, eds. (1998) ''Quantifier elimination and cylindrical algebraic decomposition''. Springer. *
Chen Chung Chang Chen Chung Chang (Chinese: 张晨钟) was a mathematician who worked in model theory. He obtained his PhD from Berkeley in 1955 on "Cardinal and Ordinal Factorization of Relation Types" under Alfred Tarski. He wrote the standard text on model t ...
and Howard Jerome Keisler (1989) ''Model Theory''. North-Holland. * Dales, H. G., and
W. Hugh Woodin William Hugh Woodin (born April 23, 1955) is an American mathematician and set theorist at Harvard University. He has made many notable contributions to the theory of inner models and determinacy. A type of large cardinals, the Woodin cardinals, ...
(1996) ''Super-Real Fields''. Oxford Univ. Press. * * * Macpherson, D., Marker, D. and Steinhorn, C., ''Weakly o-minimal structures and real closed fields'', Trans. of the American Math. Soc., Vol. 352, No. 12, 1998. * Mishra, Bhubaneswar (1997)
Computational Real Algebraic Geometry
" in ''Handbook of Discrete and Computational Geometry''. CRC Press. 2004 edition, p. 743. * * * *
Alfred Tarski Alfred Tarski (, born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician a ...
(1951) ''A Decision Method for Elementary Algebra and Geometry''. Univ. of California Press. *


External links

{{Commons category
''Real Algebraic and Analytic Geometry Preprint Server''''Model Theory preprint server''
Field (mathematics) Real algebraic geometry