David Hilbert (; ; 23 January 1862 – 14 February 1943) was a
German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including
invariant theory, the
calculus of variations
The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions
and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
,
commutative algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Promine ...
,
algebraic number theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic o ...
, the
foundations of geometry,
spectral theory In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result ...
of operators and its application to
integral equations,
mathematical physics
Mathematical physics refers to the development of mathematical methods for application to problems in physics. The '' Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the developme ...
, and the
foundations of mathematics
Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathem ...
(particularly
proof theory
Proof theory is a major branchAccording to Wang (1981), pp. 3–4, proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. Barwise (1978) consists of four corresponding parts, ...
).
Hilbert adopted and defended
Georg Cantor's set theory and
transfinite numbers. In 1900, he presented a
collection of problems that set the course for much of the mathematical research of the 20th century.
Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and
mathematical logic.
Life
Early life and education
Hilbert, the first of two children and only son of Otto and Maria Therese (Erdtmann) Hilbert, was born in the
Province of Prussia,
Kingdom of Prussia
The Kingdom of Prussia (german: Königreich Preußen, ) was a German kingdom that constituted the state of Prussia between 1701 and 1918. Marriott, J. A. R., and Charles Grant Robertson. ''The Evolution of Prussia, the Making of an Empire''. ...
, either in
Königsberg
Königsberg (, ) was the historic Prussian city that is now Kaliningrad, Russia. Königsberg was founded in 1255 on the site of the ancient Old Prussian settlement ''Twangste'' by the Teutonic Knights during the Northern Crusades, and was nam ...
(according to Hilbert's own statement) or in Wehlau (known since 1946 as
Znamensk
Znamensk (russian: Знаменск) is the name of several inhabited localities in Russia.
;Urban localities
* Znamensk, Astrakhan Oblast, a closed town in Astrakhan Oblast
;Rural localities
* Znamensk, Kaliningrad Oblast, a settlement in Zn ...
) near Königsberg where his father worked at the time of his birth.
In late 1872, Hilbert entered the Friedrichskolleg
Gymnasium (''Collegium fridericianum'', the same school that
Immanuel Kant
Immanuel Kant (, , ; 22 April 1724 – 12 February 1804) was a German philosopher and one of the central Enlightenment thinkers. Born in Königsberg, Kant's comprehensive and systematic works in epistemology, metaphysics, ethics, and a ...
had attended 140 years before); but, after an unhappy period, he transferred to (late 1879) and graduated from (early 1880) the more science-oriented Wilhelm Gymnasium. Upon graduation, in autumn 1880, Hilbert enrolled at the
University of Königsberg, the "Albertina". In early 1882,
Hermann Minkowski
Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number ...
(two years younger than Hilbert and also a native of Königsberg but had gone to Berlin for three semesters), returned to Königsberg and entered the university. Hilbert developed a lifelong friendship with the shy, gifted Minkowski.
Career
In 1884,
Adolf Hurwitz arrived from Göttingen as an
Extraordinarius (i.e., an associate professor). An intense and fruitful scientific exchange among the three began, and Minkowski and Hilbert especially would exercise a reciprocal influence over each other at various times in their scientific careers. Hilbert obtained his doctorate in 1885, with a dissertation, written under
Ferdinand von Lindemann,
titled ''Über invariante Eigenschaften spezieller binärer Formen, insbesondere der Kugelfunktionen'' ("On the invariant properties of special
binary forms, in particular the
spherical harmonic functions").
Hilbert remained at the University of Königsberg as a ''Privatdozent'' (
senior lecturer) from 1886 to 1895. In 1895, as a result of intervention on his behalf by
Felix Klein
Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and group ...
, he obtained the position of Professor of Mathematics at the
University of Göttingen. During the Klein and Hilbert years, Göttingen became the preeminent institution in the mathematical world. He remained there for the rest of his life.
Göttingen school
Among Hilbert's students were
Hermann Weyl,
chess champion
Emanuel Lasker
Emanuel Lasker (; December 24, 1868 – January 11, 1941) was a German chess player, mathematician, and philosopher who was World Chess Champion for 27 years, from 1894 to 1921, the longest reign of any officially recognised World Chess Champ ...
,
Ernst Zermelo, and
Carl Gustav Hempel
Carl Gustav "Peter" Hempel (January 8, 1905 – November 9, 1997) was a German writer, philosopher, logician, and epistemologist. He was a major figure in logical empiricism, a 20th-century movement in the philosophy of science. He is es ...
.
John von Neumann
John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest cover ...
was his assistant. At the University of Göttingen, Hilbert was surrounded by a social circle of some of the most important mathematicians of the 20th century, such as
Emmy Noether and
Alonzo Church
Alonzo Church (June 14, 1903 – August 11, 1995) was an American mathematician, computer scientist, logician, philosopher, professor and editor who made major contributions to mathematical logic and the foundations of theoretical computer sc ...
.
Among his 69 Ph.D. students in Göttingen were many who later became famous mathematicians, including (with date of thesis):
Otto Blumenthal (1898),
Felix Bernstein (1901),
Hermann Weyl (1908),
Richard Courant (1910),
Erich Hecke (1910),
Hugo Steinhaus
Hugo Dyonizy Steinhaus ( ; ; January 14, 1887 – February 25, 1972) was a Polish mathematician and educator. Steinhaus obtained his PhD under David Hilbert at Göttingen University in 1911 and later became a professor at the Jan Kazimierz Un ...
(1911), and
Wilhelm Ackermann (1925). Between 1902 and 1939 Hilbert was editor of the ''
Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert ...
'', the leading mathematical journal of the time.
Personal life

In 1892, Hilbert married Käthe Jerosch (1864–1945), who was the daughter of a Königsberg merchant, an outspoken young lady with an independence of mind that matched
ilbert's" While at Königsberg they had their one child, (1893–1969).
Franz suffered throughout his life from an undiagnosed mental illness. His inferior intellect was a terrible disappointment to his father and this misfortune was a matter of distress to the mathematicians and students at Göttingen.
Hilbert considered the mathematician
Hermann Minkowski
Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number ...
to be his "best and truest friend".
Hilbert was baptized and raised a
Calvinist
Calvinism (also called the Reformed Tradition, Reformed Protestantism, Reformed Christianity, or simply Reformed) is a major branch of Protestantism that follows the theological tradition and forms of Christian practice set down by John Cal ...
in the
Prussian Evangelical Church.
[The Hilberts had, by this time, left the Calvinist Protestant church in which they had been baptized and married. – Reid 1996, p.91] He later left the Church and became an
agnostic
Agnosticism is the view or belief that the existence of God, of the divine or the supernatural is unknown or unknowable. (page 56 in 1967 edition) Another definition provided is the view that "human reason is incapable of providing sufficient ...
.
[
David Hilbert seemed to be agnostic and had nothing to do with theology proper or even religion. Constance Reid tells a story on the subject:]The Hilberts had by this time round 1902left the Reformed Protestant Church in which they had been baptized and married. It was told in Göttingen that when avid Hilbert's sonFranz had started to school he could not answer the question, "What religion are you?" (1970, p. 91)
In the 1927 Hamburg address, Hilbert asserted: "mathematics is pre-suppositionless science (die Mathematik ist eine voraussetzungslose Wissenschaft)" and "to found it I do not need a good God ( ihrer Begründung brauche ich weder den lieben Gott)" (1928, S. 85; van Heijenoort, 1967, p. 479). However, from Mathematische Probleme (1900) to Naturerkennen und Logik (1930) he placed his quasi-religious faith in the human spirit and in the power of pure thought with its beloved child– mathematics. He was deeply convinced that every mathematical problem could be solved by pure reason: in both mathematics and any part of natural science (through mathematics) there was "no ignorabimus" (Hilbert, 1900, S. 262; 1930, S. 963; Ewald, 1996, pp. 1102, 1165). That is why finding an inner absolute grounding for mathematics turned into Hilbert's life-work. He never gave up this position, and it is symbolic that his words "wir müssen wissen, wir werden wissen" ("we must know, we shall know") from his 1930 Königsberg address were engraved on his tombstone. Here, we meet a ghost of departed theology (to modify George Berkeley's words), for to absolutize human cognition means to identify it tacitly with a divine one. —
He also argued that mathematical truth was independent of the existence of God or other ''
a priori
("from the earlier") and ("from the later") are Latin phrases used in philosophy to distinguish types of knowledge, justification, or argument by their reliance on empirical evidence or experience. knowledge is independent from current ...
'' assumptions.
["Mathematics is a presuppositionless science. To found it I do not need God, as does Kronecker, or the assumption of a special faculty of our understanding attuned to the principle of mathematical induction, as does Poincaré, or the primal intuition of Brouwer, or, finally, as do Russell and Whitehead, axioms of infinity, reducibility, or completeness, which in fact are actual, contentual assumptions that cannot be compensated for by consistency proofs." David Hilbert, ''Die Grundlagen der Mathematik'']
Hilbert's program, 22C:096, University of Iowa
When
Galileo Galilei
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
was criticized for failing to stand up for his convictions on the
Heliocentric theory, Hilbert objected: "But
alileowas not an idiot. Only an idiot could believe that scientific truth needs martyrdom; that may be necessary in religion, but scientific results prove themselves in due time."
Later years
Like
Albert Einstein, Hilbert had closest contacts with the
Berlin Group whose leading founders had studied under Hilbert in Göttingen (
Kurt Grelling
Kurt Grelling (2 March 1886 – September 1942) was a German logician and philosopher, member of the Berlin Circle.
Life and work
Kurt Grelling was born on 2 March 1886 in Berlin. His father, the Doctor of Jurisprudence Richard Grelling ...
,
Hans Reichenbach and
Walter Dubislav).
Around 1925, Hilbert developed
pernicious anemia, a then-untreatable vitamin deficiency whose primary symptom is exhaustion; his assistant
Eugene Wigner described him as subject to "enormous fatigue" and how he "seemed quite old," and that even after eventually being diagnosed and treated, he "was hardly a scientist after 1925, and certainly not a Hilbert."
Hilbert lived to see the
Nazis purge many of the prominent faculty members at
University of Göttingen in 1933. Those forced out included
Hermann Weyl (who had taken Hilbert's chair when he retired in 1930),
Emmy Noether and
Edmund Landau. One who had to leave Germany,
Paul Bernays, had collaborated with Hilbert in mathematical logic, and co-authored with him the important book ''
Grundlagen der Mathematik
''Grundlagen der Mathematik'' (English: ''Foundations of Mathematics'') is a two-volume work by David Hilbert and Paul Bernays. Originally published in 1934 and 1939, it presents fundamental mathematical ideas and introduced second-order arithme ...
'' (which eventually appeared in two volumes, in 1934 and 1939). This was a sequel to the Hilbert–
Ackermann book ''
Principles of Mathematical Logic'' from 1928. Hermann Weyl's successor was
Helmut Hasse
Helmut Hasse (; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of ''p''-adic numbers to local class field theory and ...
.
About a year later, Hilbert attended a banquet and was seated next to the new Minister of Education,
Bernhard Rust. Rust asked whether "the Mathematical Institute really suffered so much because of the departure of the Jews." Hilbert replied, "Suffered? It doesn't exist any longer, does it?"
Death

By the time Hilbert died in 1943, the Nazis had nearly completely restaffed the university, as many of the former faculty had either been Jewish or married to Jews. Hilbert's funeral was attended by fewer than a dozen people, only two of whom were fellow academics, among them
Arnold Sommerfeld
Arnold Johannes Wilhelm Sommerfeld, (; 5 December 1868 – 26 April 1951) was a German theoretical physicist who pioneered developments in atomic and quantum physics, and also educated and mentored many students for the new era of theoretical ...
, a theoretical physicist and also a native of Königsberg. News of his death only became known to the wider world several months after he died.
The epitaph on his tombstone in Göttingen consists of the famous lines he spoke at the conclusion of his retirement address to the Society of German Scientists and Physicians on 8 September 1930. The words were given in response to the Latin maxim: "''
Ignoramus et ignorabimus''" or "We do not know, we shall not know":
The day before Hilbert pronounced these phrases at the 1930 annual meeting of the Society of German Scientists and Physicians,
Kurt Gödel
Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imme ...
—in a round table discussion during the Conference on Epistemology held jointly with the Society meetings—tentatively announced the first expression of his incompleteness theorem.
[
"The Conference on Epistemology of the Exact Sciences ran for three days, from 5 to 7 September" (Dawson 1997:68). "It ... was held in conjunction with and just before the ninety-first annual meeting of the Society of German Scientists and Physicians ... and the sixth Assembly of German Physicists and Mathematicians.... Gödel's contributed talk took place on Saturday, 6 September 930 from 3 until 3:20 in the afternoon, and on Sunday the meeting concluded with a round table discussion of the first day's addresses. During the latter event, without warning and almost offhandedly, Gödel quietly announced that "one can even give examples of propositions (and in fact of those of the type of Goldbach or ]Fermat
Pierre de Fermat (; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is ...
) that, while contentually true, are unprovable in the formal system of classical mathematics 53 (Dawson:69) "... As it happened, Hilbert himself was present at Königsberg, though apparently not at the Conference on Epistemology. The day after the roundtable discussion he delivered the opening address before the Society of German Scientists and Physicians – his famous lecture ''Naturerkennen und Logik'' (Logic and the knowledge of nature), at the end of which he declared: 'For the mathematician there is no Ignorabimus, and, in my opinion, not at all for natural science either. ... The true reason why o-onehas succeeded in finding an unsolvable problem is, in my opinion, that there is ''no'' unsolvable problem. In contrast to the foolish Ignorabimus, our credo avers: We must know, We shall know 59"(Dawson:71). Gödel's paper was received on November 17, 1930 (cf Reid p. 197, van Heijenoort 1976:592) and published on 25 March 1931 (Dawson 1997:74). But Gödel had given a talk about it beforehand... "An abstract had been presented in October 1930 to the Vienna Academy of Sciences by Hans Hahn" (van Heijenoort:592); this abstract and the full paper both appear in van Heijenoort:583ff. Gödel's incompleteness theorems
Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the phil ...
show that even
elementary
Elementary may refer to:
Arts, entertainment, and media Music
* Elementary (Cindy Morgan album), ''Elementary'' (Cindy Morgan album), 2001
* Elementary (The End album), ''Elementary'' (The End album), 2007
* ''Elementary'', a Melvin "Wah-Wah Watso ...
axiomatic systems such as
Peano arithmetic are either self-contradicting or contain logical propositions that are impossible to prove or disprove within that system.
Contributions to mathematics and physics
Hilbert solves Gordan's Problem
Hilbert's first work on invariant functions led him to the demonstration in 1888 of his famous ''finiteness theorem''. Twenty years earlier,
Paul Gordan had demonstrated the
theorem
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of th ...
of the finiteness of generators for binary forms using a complex computational approach. Attempts to generalize his method to functions with more than two variables failed because of the enormous difficulty of the calculations involved. To solve what had become known in some circles as ''Gordan's Problem'', Hilbert realized that it was necessary to take a completely different path. As a result, he demonstrated ''
Hilbert's basis theorem'', showing the existence of a finite set of generators, for the invariants of
quantics in any number of variables, but in an abstract form. That is, while demonstrating the existence of such a set, it was not a
constructive proof—it did not display "an object"—but rather, it was an
existence proof and relied on use of the
law of excluded middle
In logic, the law of excluded middle (or the principle of excluded middle) states that for every proposition, either this proposition or its negation is true. It is one of the so-called three laws of thought, along with the law of noncontrad ...
in an infinite extension.
Hilbert sent his results to the ''
Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert ...
''. Gordan, the house expert on the theory of invariants for the ''Mathematische Annalen'', could not appreciate the revolutionary nature of Hilbert's theorem and rejected the article, criticizing the exposition because it was insufficiently comprehensive. His comment was:
Klein, on the other hand, recognized the importance of the work, and guaranteed that it would be published without any alterations. Encouraged by Klein, Hilbert extended his method in a second article, providing estimations on the maximum degree of the minimum set of generators, and he sent it once more to the ''Annalen''. After having read the manuscript, Klein wrote to him, saying:
Later, after the usefulness of Hilbert's method was universally recognized, Gordan himself would say:
For all his successes, the nature of his proof created more trouble than Hilbert could have imagined. Although
Kronecker had conceded, Hilbert would later respond to others' similar criticisms that "many different constructions are subsumed under one fundamental idea"—in other words (to quote Reid): "Through a proof of existence, Hilbert had been able to obtain a construction"; "the proof" (i.e. the symbols on the page) ''was'' "the object".
Not all were convinced. While
Kronecker would die soon afterwards, his
constructivist philosophy would continue with the young
Brouwer and his developing
intuitionist "school", much to Hilbert's torment in his later years. Indeed, Hilbert would lose his "gifted pupil"
Weyl
Hermann Klaus Hugo Weyl, (; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, he is as ...
to intuitionism—"Hilbert was disturbed by his former student's fascination with the ideas of Brouwer, which aroused in Hilbert the memory of Kronecker". Brouwer the intuitionist in particular opposed the use of the Law of Excluded Middle over infinite sets (as Hilbert had used it). Hilbert responded:
Axiomatization of geometry
The text ''
Grundlagen der Geometrie'' (tr.: ''Foundations of Geometry'') published by Hilbert in 1899 proposes a formal set, called Hilbert's axioms, substituting for the traditional
axioms of Euclid. They avoid weaknesses identified in those of
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
, whose works at the time were still used textbook-fashion. It is difficult to specify the axioms used by Hilbert without referring to the publication history of the ''Grundlagen'' since Hilbert changed and modified them several times. The original monograph was quickly followed by a French translation, in which Hilbert added V.2, the Completeness Axiom. An English translation, authorized by Hilbert, was made by E.J. Townsend and copyrighted in 1902. This translation incorporated the changes made in the French translation and so is considered to be a translation of the 2nd edition. Hilbert continued to make changes in the text and several editions appeared in German. The 7th edition was the last to appear in Hilbert's lifetime. New editions followed the 7th, but the main text was essentially not revised.
Hilbert's approach signaled the shift to the modern
axiomatic method. In this, Hilbert was anticipated by
Moritz Pasch's work from 1882. Axioms are not taken as self-evident truths. Geometry may treat ''things'', about which we have powerful intuitions, but it is not necessary to assign any explicit meaning to the undefined concepts. The elements, such as
point,
line,
plane
Plane(s) most often refers to:
* Aero- or airplane, a powered, fixed-wing aircraft
* Plane (geometry), a flat, 2-dimensional surface
Plane or planes may also refer to:
Biology
* Plane (tree) or ''Platanus'', wetland native plant
* ''Planes' ...
, and others, could be substituted, as Hilbert is reported to have said to
Schoenflies and
Kötter, by tables, chairs, glasses of beer and other such objects. It is their defined relationships that are discussed.
Hilbert first enumerates the undefined concepts: point, line, plane, lying on (a relation between points and lines, points and planes, and lines and planes), betweenness, congruence of pairs of points (
line segments), and
congruence of
angle
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle.
Angles formed by two rays lie in the plane that contains the rays. Angles ...
s. The axioms unify both the
plane geometry and
solid geometry
In mathematics, solid geometry or stereometry is the traditional name for the geometry of three-dimensional, Euclidean spaces (i.e., 3D geometry).
Stereometry deals with the measurements of volumes of various solid figures (or 3D figures), ...
of Euclid in a single system.
The 23 problems
Hilbert put forth a most influential list of 23 unsolved problems at the
International Congress of Mathematicians
The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU).
The Fields Medals, the Nevanlinna Prize (to be renam ...
in
Paris in 1900. This is generally reckoned as the most successful and deeply considered compilation of open problems ever to be produced by an individual mathematician.
After re-working the foundations of classical geometry, Hilbert could have extrapolated to the rest of mathematics. His approach differed, however, from the later "foundationalist" Russell–Whitehead or "encyclopedist"
Nicolas Bourbaki
Nicolas Bourbaki () is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure - PSL (ENS). Founded in 1934–1935, the Bourbaki group originally intended to prepare a new textbook ...
, and from his contemporary
Giuseppe Peano
Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much notation. The stand ...
. The mathematical community as a whole could enlist in problems, which he had identified as crucial aspects of the areas of mathematics he took to be key.
The problem set was launched as a talk "The Problems of Mathematics" presented during the course of the Second International Congress of Mathematicians held in Paris. The introduction of the speech that Hilbert gave said:
He presented fewer than half the problems at the Congress, which were published in the acts of the Congress. In a subsequent publication, he extended the panorama, and arrived at the formulation of the now-canonical 23 Problems of Hilbert. See also
Hilbert's twenty-fourth problem. The full text is important, since the exegesis of the questions still can be a matter of inevitable debate, whenever it is asked how many have been solved.
Some of these were solved within a short time. Others have been discussed throughout the 20th century, with a few now taken to be unsuitably open-ended to come to closure. Some continue to remain challenges.
Formalism
In an account that had become standard by the mid-century, Hilbert's problem set was also a kind of manifesto that opened the way for the development of the
formalist school, one of three major schools of mathematics of the 20th century. According to the formalist, mathematics is manipulation of symbols according to agreed upon formal rules. It is therefore an autonomous activity of thought. There is, however, room to doubt whether Hilbert's own views were simplistically formalist in this sense.
Hilbert's program
In 1920, Hilbert proposed a research project in
metamathematics
Metamathematics is the study of mathematics itself using mathematical methods. This study produces metatheories, which are mathematical theories about other mathematical theories. Emphasis on metamathematics (and perhaps the creation of the te ...
that became known as Hilbert's program. He wanted mathematics to be formulated on a solid and complete logical foundation. He believed that in principle this could be done by showing that:
# all of mathematics follows from a correctly chosen finite system of
axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s; and
# that some such axiom system is provably consistent through some means such as the
epsilon calculus.
He seems to have had both technical and philosophical reasons for formulating this proposal. It affirmed his dislike of what had become known as the
ignorabimus, still an active issue in his time in German thought, and traced back in that formulation to
Emil du Bois-Reymond.
This program is still recognizable in the most popular
philosophy of mathematics
The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people' ...
, where it is usually called ''formalism''. For example, the
Bourbaki group adopted a watered-down and selective version of it as adequate to the requirements of their twin projects of (a) writing encyclopedic foundational works, and (b) supporting the
axiomatic method as a research tool. This approach has been successful and influential in relation with Hilbert's work in algebra and functional analysis, but has failed to engage in the same way with his interests in physics and logic.
Hilbert wrote in 1919:
Hilbert published his views on the foundations of mathematics in the 2-volume work,
Grundlagen der Mathematik
''Grundlagen der Mathematik'' (English: ''Foundations of Mathematics'') is a two-volume work by David Hilbert and Paul Bernays. Originally published in 1934 and 1939, it presents fundamental mathematical ideas and introduced second-order arithme ...
.
Gödel's work
Hilbert and the mathematicians who worked with him in his enterprise were committed to the project. His attempt to support axiomatized mathematics with definitive principles, which could banish theoretical uncertainties, ended in failure.
Gödel demonstrated that any non-contradictory formal system, which was comprehensive enough to include at least arithmetic, cannot demonstrate its completeness by way of its own axioms. In 1931 his
incompleteness theorem showed that Hilbert's grand plan was impossible as stated. The second point cannot in any reasonable way be combined with the first point, as long as the axiom system is genuinely
finitary.
Nevertheless, the subsequent achievements of proof theory at the very least ''clarified'' consistency as it relates to theories of central concern to mathematicians. Hilbert's work had started logic on this course of clarification; the need to understand Gödel's work then led to the development of
recursion theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since ...
and then
mathematical logic as an autonomous discipline in the 1930s. The basis for later
theoretical computer science, in the work of
Alonzo Church
Alonzo Church (June 14, 1903 – August 11, 1995) was an American mathematician, computer scientist, logician, philosopher, professor and editor who made major contributions to mathematical logic and the foundations of theoretical computer sc ...
and
Alan Turing, also grew directly out of this "debate".
Functional analysis
Around 1909, Hilbert dedicated himself to the study of differential and
integral equation
In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,...,x_n ; u(x_1,x_2,x_3,...,x_n) ...
s; his work had direct consequences for important parts of modern functional analysis. In order to carry out these studies, Hilbert introduced the concept of an infinite dimensional
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
, later called
Hilbert space. His work in this part of analysis provided the basis for important contributions to the mathematics of physics in the next two decades, though from an unanticipated direction. Later on,
Stefan Banach amplified the concept, defining
Banach spaces. Hilbert spaces are an important class of objects in the area of
functional analysis, particularly of the
spectral theory In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result ...
of self-adjoint linear operators, that grew up around it during the 20th century.
Physics
Until 1912, Hilbert was almost exclusively a
pure mathematician. When planning a visit from Bonn, where he was immersed in studying physics, his fellow mathematician and friend
Hermann Minkowski
Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number ...
joked he had to spend 10 days in quarantine before being able to visit Hilbert. In fact, Minkowski seems responsible for most of Hilbert's physics investigations prior to 1912, including their joint seminar on the subject in 1905.
In 1912, three years after his friend's death, Hilbert turned his focus to the subject almost exclusively. He arranged to have a "physics tutor" for himself. He started studying
kinetic gas theory and moved on to elementary
radiation theory and the molecular theory of matter. Even after the war started in 1914, he continued seminars and classes where the works of
Albert Einstein and others were followed closely.
By 1907, Einstein had framed the fundamentals of the theory of
gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
, but then struggled for nearly 8 years to put the theory into
its final form. By early summer 1915, Hilbert's interest in physics had focused on
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
, and he invited Einstein to Göttingen to deliver a week of lectures on the subject. Einstein received an enthusiastic reception at Göttingen. Over the summer, Einstein learned that Hilbert was also working on the field equations and redoubled his own efforts. During November 1915, Einstein published several papers culminating in ''The Field Equations of Gravitation'' (see
Einstein field equations
In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it.
The equations were published by Einstein in 1915 in the form ...
).
[In time, associating the gravitational field equations with Hilbert's name became less and less common. A noticeable exception is P. Jordan (Schwerkraft und Weltall, Braunschweig, Vieweg, 1952), who called the equations of gravitation in the vacuum the Einstein–Hilbert equations. (''Leo Corry, David Hilbert and the Axiomatization of Physics'', p. 437)] Nearly simultaneously, Hilbert published "The Foundations of Physics", an axiomatic derivation of the field equations (see
Einstein–Hilbert action). Hilbert fully credited Einstein as the originator of the theory and no public priority dispute concerning the field equations ever arose between the two men during their lives.
[Since 1971 there have been some spirited and scholarly discussions about which of the two men first presented the now accepted form of the field equations. "Hilbert freely admitted, and frequently stated in lectures, that the great idea was Einstein's: "Every boy in the streets of Gottingen understands more about four dimensional geometry than Einstein," he once remarked. "Yet, in spite of that, Einstein did the work and not the mathematicians." (Reid 1996, pp. 141–142, also Isaacson 2007:222 quoting Thorne p. 119).] See more at
priority.
Additionally, Hilbert's work anticipated and assisted several advances in the
mathematical formulation of quantum mechanics
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which ...
. His work was a key aspect of
Hermann Weyl and
John von Neumann
John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest cover ...
's work on the mathematical equivalence of
Werner Heisenberg's
matrix mechanics
Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum ...
and
Erwin Schrödinger
Erwin Rudolf Josef Alexander Schrödinger (, ; ; 12 August 1887 – 4 January 1961), sometimes written as or , was a Nobel Prize-winning Austrian physicist with Irish citizenship who developed a number of fundamental results in quantum theory ...
's
wave equation, and his namesake Hilbert space plays an important part in quantum theory. In 1926, von Neumann showed that, if quantum states were understood as vectors in Hilbert space, they would correspond with both Schrödinger's wave function theory and Heisenberg's matrices.
[In 1926, the year after the matrix mechanics formulation of quantum theory by ]Max Born
Max Born (; 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a n ...
and Werner Heisenberg, the mathematician John von Neumann
John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest cover ...
became an assistant to Hilbert at Göttingen. When von Neumann left in 1932, von Neumann's book on the mathematical foundations of quantum mechanics, based on Hilbert's mathematics, was published under the title ''Mathematische Grundlagen der Quantenmechanik''. See: Norman Macrae (1999) ''John von Neumann: The Scientific Genius Who Pioneered the Modern Computer, Game Theory, Nuclear Deterrence, and Much More'' (reprinted by the American Mathematical Society) and Reid (1996).
Throughout this immersion in physics, Hilbert worked on putting rigor into the mathematics of physics. While highly dependent on higher mathematics, physicists tended to be "sloppy" with it. To a pure mathematician like Hilbert, this was both ugly, and difficult to understand. As he began to understand physics and how physicists were using mathematics, he developed a coherent mathematical theory for what he found – most importantly in the area of
integral equations. When his colleague Richard Courant wrote the now classic ''
Methoden der mathematischen Physik'' (''Methods of Mathematical Physics'') including some of Hilbert's ideas, he added Hilbert's name as author even though Hilbert had not directly contributed to the writing. Hilbert said "Physics is too hard for physicists", implying that the necessary mathematics was generally beyond them; the Courant-Hilbert book made it easier for them.
Number theory
Hilbert unified the field of
algebraic number theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic o ...
with his 1897 treatise ''
Zahlbericht'' (literally "report on numbers"). He also resolved a significant number-theory
problem formulated by Waring in 1770. As with
the finiteness theorem, he used an existence proof that shows there must be solutions for the problem rather than providing a mechanism to produce the answers. He then had little more to publish on the subject; but the emergence of
Hilbert modular forms in the dissertation of a student means his name is further attached to a major area.
He made a series of conjectures on
class field theory
In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.
Hilbert is credited ...
. The concepts were highly influential, and his own contribution lives on in the names of the
Hilbert class field and of the
Hilbert symbol In mathematics, the Hilbert symbol or norm-residue symbol is a function (–, –) from ''K''× × ''K''× to the group of ''n''th roots of unity in a local field ''K'' such as the fields of reals or p-adic numbers . It is related to reciprocity ...
of
local class field theory In mathematics, local class field theory, introduced by Helmut Hasse, is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite r ...
. Results were mostly proved by 1930, after work by
Teiji Takagi
Teiji Takagi (高木 貞治 ''Takagi Teiji'', April 21, 1875 – February 28, 1960) was a Japanese mathematician, best known for proving the Takagi existence theorem in class field theory. The Blancmange curve, the graph of a nowhere-differentia ...
.
[This work established Takagi as Japan's first mathematician of international stature.]
Hilbert did not work in the central areas of
analytic number theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Di ...
, but his name has become known for the
Hilbert–Pólya conjecture, for reasons that are anecdotal.
Works
His collected works (''Gesammelte Abhandlungen'') have been published several times. The original versions of his papers contained "many technical errors of varying degree";
[, chap. 13.] when the collection was first published, the errors were corrected and it was found that this could be done without major changes in the statements of the theorems, with one exception—a claimed proof of the
continuum hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that
or equivalently, that
In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent t ...
.
[ Rota G.-C. (1997),]
Ten lessons I wish I had been taught
, ''Notices of the AMS
''Notices of the American Mathematical Society'' is the membership journal of the American Mathematical Society (AMS), published monthly except for the combined June/July issue. The first volume appeared in 1953. Each issue of the magazine since ...
'', 44: 22-25. The errors were nonetheless so numerous and significant that it took
Olga Taussky-Todd three years to make the corrections.
See also
Concepts
*
List of things named after David Hilbert
*
Foundations of geometry
*
Hilbert C*-module
*
Hilbert cube
*
Hilbert curve
*
Hilbert matrix
*
Hilbert metric
*
Hilbert–Mumford criterion
*
Hilbert number
*
Hilbert ring
*
Hilbert–Poincaré series
*
Hilbert series and Hilbert polynomial
*
Hilbert space
*
Hilbert spectrum
*
Hilbert system
:''In mathematical physics, ''Hilbert system'' is an infrequently used term for a physical system described by a C*-algebra.''
In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive s ...
*
Hilbert transform
*
Hilbert's arithmetic of ends
*
Hilbert's paradox of the Grand Hotel
*
Hilbert–Schmidt operator
*
Hilbert–Smith conjecture
Theorems
*
Hilbert–Burch theorem
*
Hilbert's irreducibility theorem
*
Hilbert's Nullstellensatz
*
Hilbert's theorem (differential geometry)
*
Hilbert's Theorem 90
*
Hilbert's syzygy theorem
*
Hilbert–Speiser theorem
Other
*
Brouwer–Hilbert controversy
*
Direct method in the calculus of variations
*
Entscheidungsproblem
* ''
Geometry and the Imagination''
*
General relativity priority dispute
Footnotes
Citations
Sources
Primary literature in English translation
*
** 1918. "Axiomatic thought," 1114–1115.
** 1922. "The new grounding of mathematics: First report," 1115–1133.
** 1923. "The logical foundations of mathematics," 1134–1147.
** 1930. "Logic and the knowledge of nature," 1157–1165.
** 1931. "The grounding of elementary number theory," 1148–1156.
** 1904. "On the foundations of logic and arithmetic," 129–138.
** 1925. "On the infinite," 367–392.
** 1927. "The foundations of mathematics," with comment by
Weyl
Hermann Klaus Hugo Weyl, (; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, he is as ...
and Appendix by
Bernays, 464–489.
*
*
*
*
*
Secondary literature
* , available at
Gallica. The "Address" of Gabriel Bertrand of 20 December 1943 at the French Academy: he gives biographical sketches of the lives of recently deceased members, including
Pieter Zeeman, David Hilbert and
Georges Giraud.
* Bottazzini Umberto, 2003. ''Il flauto di Hilbert. Storia della matematica''.
UTET,
* Corry, L., Renn, J., and Stachel, J., 1997, "Belated Decision in the Hilbert-Einstein Priority Dispute," ''Science 278'': nn-nn.
*
* Dawson, John W. Jr 1997. ''Logical Dilemmas: The Life and Work of Kurt Gödel''. Wellesley MA: A. K. Peters. .
*
*
Grattan-Guinness, Ivor, 2000. ''The Search for Mathematical Roots 1870–1940''. Princeton Univ. Press.
*
Gray, Jeremy, 2000. ''The Hilbert Challenge''.
*
*
Mehra, Jagdish, 1974. ''Einstein, Hilbert, and the Theory of Gravitation''. Reidel.
*
Piergiorgio Odifreddi, 2003. ''Divertimento Geometrico. Le origini geometriche della logica da Euclide a Hilbert''. Bollati Boringhieri, . A clear exposition of the "errors" of Euclid and of the solutions presented in the ''Grundlagen der Geometrie'', with reference to
non-Euclidean geometry
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ...
.
* The definitive English-language biography of Hilbert.
*
*
*
*Sieg, Wilfried, and Ravaglia, Mark, 2005, "Grundlagen der Mathematik" in
Grattan-Guinness, I., ed., ''Landmark Writings in Western Mathematics''.
Elsevier
Elsevier () is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as '' The Lancet'', '' Cell'', the ScienceDirect collection of electronic journals, '' Trends'', t ...
: 981-99. (in English)
*
Thorne, Kip, 1995. ''
Black Holes and Time Warps: Einstein's Outrageous Legacy'', W. W. Norton & Company; Reprint edition. .
External links
Hilbert Bernays ProjectICMM 2014 dedicated to the memory of D.Hilbert*
*
*
Hilbert's radio speech recorded in Königsberg 1930 (in German), with Englis
translation
*
*
'From Hilbert's Problems to the Future' lecture by Professor Robin Wilson,
Gresham College
Gresham College is an institution of higher learning located at Barnard's Inn Hall off Holborn in Central London, England. It does not enroll students or award degrees. It was founded in 1596 under the will of Sir Thomas Gresham, and hosts ove ...
, 27 February 2008 (available in text, audio and video formats).
*
{{DEFAULTSORT:Hilbert, David
1862 births
1943 deaths
19th-century German mathematicians
20th-century German mathematicians
Foreign Members of the Royal Society
Foreign associates of the National Academy of Sciences
German agnostics
Formalism (deductive)
Former Protestants
Geometers
Mathematical analysts
Number theorists
Operator theorists
Scientists from Königsberg
People from the Province of Prussia
Recipients of the Pour le Mérite (civil class)
German relativity theorists
University of Göttingen faculty
University of Königsberg alumni
University of Königsberg faculty