DNM1L
   HOME

TheInfoList



OR:

Dynamin-1-like protein is a
GTPase GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a pro ...
that regulates
mitochondrial fission Mitochondrial fission is the process where mitochondria divide or segregate into two separate mitochondrial organelles. Mitochondrial fission is counteracted by the process of mitochondrial fusion, whereby two separate mitochondria can fuse togeth ...
. In humans, dynamin-1-like protein, which is typically referred to as dynamin-related protein 1 (Drp1), is encoded by the ''DNM1L''
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
and is part of the dynamin superfamily (DSP) family of proteins.


Structure

Drp1, which is a member of the
dynamin Dynamin is a GTPase responsible for endocytosis in the eukaryotic cell. Dynamin is part of the "dynamin superfamily", which includes classical dynamins, dynamin-like proteins, Mx proteins, OPA1, mitofusins, and GBPs. Members of the dynamin fa ...
superfamily of proteins, consists of a GTPase and GTPase effector domain that are separated from each other by a helical segment of amino acids. There are 3 mouse and 6 human
isoforms A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene or gene family and are the result of genetic differences. While many perform the same or similar biological roles, some isof ...
of Drp1, including a brain-specific variant. Drp1 exists as homooligomers and its function relies on its oligomerization ability.


Function

Mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
routinely undergo fission and fusion events that maintain a dynamic reticular network. Drp1 is a fundamental component of
mitochondrial fission Mitochondrial fission is the process where mitochondria divide or segregate into two separate mitochondrial organelles. Mitochondrial fission is counteracted by the process of mitochondrial fusion, whereby two separate mitochondria can fuse togeth ...
. Indeed, Drp1 deficient neurons have large, strongly interconnected mitochondria due to dysfunctional fission machinery. Fission helps facilitate
mitophagy Mitophagy is the selective degradation of mitochondria by autophagy. It often occurs to defective mitochondria following damage or stress. The process of mitophagy was first described over a hundred years ago by Margaret Reed Lewis and Warren Harmo ...
, which is the breakdown and recycling of damaged mitochondria. Dysfunction in the DRP activity may result in mutated DNA or malfunctioning proteins diffusing throughout the mitochondrial system. In addition, fission results in fragmented mitochondria more capable of producing of
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
, which can disrupt normal biochemical processes inside of cells. ROS can be formed from incomplete transfer of electrons through the electron transport chain. Furthermore, fission influences calcium flux within the cell, linking Drp1 to apoptosis and cancer. Several studies have indicated that Drp1 is essential for proper embryonic development. Drp1
knockout mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or "knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
exhibit abnormal brain development and die around embryonic day 12. In neural specific Drp1 knockout mice, brain size is reduced and
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
is increased.
Synapse formation Synaptogenesis is the formation of synapses between neurons in the nervous system. Although it occurs throughout a healthy person's lifespan, an explosion of synapse formation occurs during early brain development, known as exuberant synaptogenes ...
and neurite growth are also impaired. A second group of researchers generated another neural specific knockout mouse line. They found that knocking out Drp1 resulted in the appearance of large mitochondria in
Purkinje cells Purkinje cells, or Purkinje neurons, are a class of GABAergic inhibitory neurons located in the cerebellum. They are named after their discoverer, Czech anatomist Jan Evangelista Purkyně, who characterized the cells in 1839. Structure The ...
and prevented neural tube formation. In humans, loss of Drp1 function affects brain development and is also associated with early mortality.


Interactions

The majority of knowledge about
mitochondrial fission Mitochondrial fission is the process where mitochondria divide or segregate into two separate mitochondrial organelles. Mitochondrial fission is counteracted by the process of mitochondrial fusion, whereby two separate mitochondria can fuse togeth ...
comes from studies with
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constitut ...
. The yeast
homolog In biology, homology is similarity due to shared ancestry between a pair of structures or genes in different taxa. A common example of homologous structures is the forelimbs of vertebrates, where the wings of bats and birds, the arms of prima ...
of Drp1 is dynamin-1 (Dnm1), which interacts with
Fis1 Mitochondrial fission 1 protein (FIS1) is a protein that in humans is encoded by the ''FIS1'' gene on chromosome 7. This protein is a component of a mitochondrial complex, the ARCosome, that promotes mitochondrial fission. Its role in mitochondri ...
through Mdv1. This interaction causes Dnm1 to oligomerize and form rings around dividing mitochondria at the so-called "constriction point". Drp1 has also been shown to interact with
GSK3B Glycogen synthase kinase-3 beta, (GSK-3 beta), is an enzyme that in humans is encoded by the ''GSK3B'' gene. In mice, the enzyme is encoded by the Gsk3b gene. Abnormal regulation and expression of GSK-3 beta is associated with an increased suscept ...
. In mammals, Drp1 receptors include Mff, Mid49 and Mid51
Post-translational modifications Post-translational modification (PTM) is the covalent and generally enzymatic modification of proteins following protein biosynthesis. This process occurs in the endoplasmic reticulum and the golgi apparatus. Proteins are synthesized by ribosomes ...
to Drp1 (e.g.
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
) can alter its activity and affect the rate of fission. Drp1 has two major phosphorylation sites. The CDK phosphorylation site is S579, and the PKA site is S600 in Drp1 isoform 3. Phosphorylation by CDK is thought to be activating, whereas PKA phosphorylation is thought to be inhibitory. Recently,
CaMKII /calmodulin-dependent protein kinase II (CaM kinase II or CaMKII) is a serine/threonine-specific protein kinase that is regulated by the / calmodulin complex. CaMKII is involved in many signaling cascades and is thought to be an important mediato ...
was shown to phosphorylate Drp1 at S616. This was shown to occur in response to chronic Beta-adrenergic stimulation and to promote mPTP opening. Other post-translational modifications include S-nitrosylation,
sumoylation In molecular biology, SUMO (Small Ubiquitin-like Modifier) proteins are a family of small proteins that are covalently attached to and detached from other proteins in cells to modify their function. This process is called SUMOylation (sometimes w ...
, and
ubiquitination Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Fo ...
. Higher S- nitrosylation modifications of Drp1, which enhances Drp1 activity, have been observed in
Alzheimer’s Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As t ...
Disease. Furthermore, Drp1 has been shown to interact with Aβ monomers, thought to play an important role in Alzheimer’s Disease, exacerbating the disease and its symptoms. Drp1 has been linked to a number of pathways and processes including cell division,
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
, and
necrosis Necrosis () is a form of cell injury which results in the premature death of cells in living tissue by autolysis. Necrosis is caused by factors external to the cell or tissue, such as infection, or trauma which result in the unregulated dige ...
. Drp1 has been shown to stabilize
p53 p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often s ...
during oxidative stress, promoting its translocation to the mitochondria and encouraging mitochondrial- related necrosis. In addition, cyclin B1- CDK activates Drp1, causing fragmentation and ensuring mitochondria are distributed to each daughter cell after mitosis. Likewise, different transcriptional controllers are able to alter Drp1 activity through gene expression and regulation. For example,
PPARGC1A Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a protein that in humans is encoded by the ''PPARGC1A'' gene. PPARGC1A is also known as human accelerated region 20 ( HAR20). It may, therefore, have played a key ro ...
and IF1A regulated Drp1 activity through gene expression.


Therapy

Inhibition of Drp1 has been considered for possible therapeutics for a variety of diseases. The most studied inhibitor is a small molecule named mitochondrial division inhibitor 1 (mdivi-1) which may have off-target effects such as inhibition of complex 1 of the mitochondrial respiratory chain. The inhibitors putative function is preventing the GTPase activity of Drp1 thus preventing the activation and localization to the mitochondria. Midiv-1 has been demonstrated to attenuate the effects of ischemia reperfusion injury after cardiac arrest. The treatment prevented both mitochondria fragmentation and increased cell viability. Similarly, midiv-1 has demonstrated neuroprotective effects by greatly reducing neuron death due to seizure. Furthermore, the study showed midiv-1 was capable to preventing the activation of caspase 3 by reversing the release of cytochrome c in intrinsic apoptosis. Whether mdivi-1 inhibits Drp1 or not, its therapeutic potential is certainly evident. Other than directly inhibiting Drp1, certain inhibitors of proteins involved in the posttranslational modifications of Drp1 have been studied. FK506 is a calcineurin inhibitor, which functions to dephosphorylate the serine 637 position of Drp1, encouraging translocation to the mitochondria and fragmentation. FK506 was shown to also preserve mitochondrial morphology after reperfusion injury.


References


Further reading

* * * * * * * * * * * * * * * * *


External links

* * * {{PDBe-KB2, O00429, Dynamin-1-like protein