Procedure
DCM is typically used to estimate the coupling among brain regions and the changes in coupling due to experimental changes (e.g., time or context). A model of interacting neural populations is specified, with a level of biological detail dependent on the hypotheses and available data. This is coupled with a forward model describing how neural activity gives rise to measured responses. Estimating the generative model identifies the parameters (e.g. connection strengths) from the observed data. Bayesian model comparison is used to compare models based on their evidence, which can then be characterised in terms of parameters. DCM studies typically involve the following stages: # Experimental design. Specific hypotheses are formulated and an experiment is conducted. #Data preparation. The acquired data are pre-processed (e.g., to select relevant data features and remove confounds). # Model specification. One or more forward models (DCMs) are specified for each dataset. #Model estimation. The model(s) are fitted to the data to determine their evidence and parameters. # Model comparison. The evidence for each model is used for Bayesian Model Comparison (at the single-subject level or at the group level) to select the best model(s). Bayesian model averaging (BMA) is used to compute a weighted average of parameter estimates over different models. The key stages are briefly reviewed below.Experimental design
Functional neuroimaging experiments are typically either task-based or examine brain activity at rest (Model specification
All models in DCM have the following basic form: The first equality describes the change in neural activity with respect to time (i.e. ), which cannot be directly observed using non-invasive functional imaging modalities. The evolution of neural activity over time is controlled by a neural function with parameters and experimental inputs . The neural activity in turn causes the timeseries (second equality), which are generated via an observation function with parameters . Additive observation noise completes the observation model. Usually, the neural parameters are of key interest, which for example represent connection strengths that may change under different experimental conditions. Specifying a DCM requires selecting a neural model and observation model and setting appropriate priors over the parameters; e.g. selecting which connections should be switched on or off.Functional MRI
EEG / MEG
DCM for EEG and MEG data use more biologically detailed neural models than fMRI, due to the higher temporal resolution of these measurement techniques. These can be classed into physiological models, which recapitulate neural circuitry, and phenomenological models, which focus on reproducing particular data features. The physiological models can be further subdivided into two classesModel estimation
Model inversion or estimation is implemented in DCM using variational Bayes under the Laplace assumption. This provides two useful quantities: the log marginal likelihood or model evidence is the probability of observing of the data under a given model. Generally, this cannot be calculated explicitly and is approximated by a quantity called the negative variational free energy , referred to in machine learning as the Evidence Lower Bound (ELBO). Hypotheses are tested by comparing the evidence for different models based on their free energy, a procedure called Bayesian model comparison. Model estimation also provides estimates of the parameters , for example connection strengths, which maximise the free energy. Where models differ only in their priors, Bayesian Model Reduction can be used to derive the evidence and parameters of nested or reduced models analytically and efficiently.Model comparison
Neuroimaging studies typically investigate effects that are conserved at the group level, or which differ between subjects. There are two predominant approaches for group-level analysis: random effects Bayesian Model Selection (BMS) and Parametric Empirical Bayes (PEB). Random Effects BMS posits that subjects differ in terms of which model generated their data - e.g. drawing a random subject from the population, there might be a 25% chance that their brain is structured like model 1 and a 75% chance that it is structured like model 2. The analysis pipeline for the BMS approach procedure follows a series of steps: # Specify and estimate multiple DCMs per subject, where each DCM (or set of DCMs) embodies a hypothesis. # Perform Random Effects BMS to estimate the proportion of subjects whose data were generated by each model # Calculate the average connectivity parameters across models using Bayesian Model Averaging. This average is weighted by the posterior probability for each model, meaning that models with greater probability contribute more to the average than models with lower probability. Alternatively, Parametric Empirical Bayes (PEB) can be used, which specifies a hierarchical model over parameters (e.g., connection strengths). It eschews the notion of different models at the level of individual subjects, and assumes that people differ in the (parametric) strength of connections. The PEB approach models distinct sources of variability in connection strengths across subjects using fixed effects and between-subject variability (random effects). The PEB procedure is as follows: # Specify a single 'full' DCM per subject, which contains all the parameters of interest. # Specify a Bayesian General Linear Model (GLM) to model the parameters (the full posterior density) from all subjects at the group level. # Test hypotheses by comparing the full group-level model to reduced group-level models where certain combinations of connections have been switched off.Validation
Developments in DCM have been validated using different approaches: * Face validity establishes whether the parameters of a model can be recovered from simulated data. This is usually performed alongside the development of each new model (E.g.). * Construct validity assesses consistency with other analytical methods. For example, DCM has been compared with Structural Equation Modelling and other neurobiological computational models. * Predictive validity assesses the ability to predict known or expected effects. This has included testing against iEEG / EEG / stimulation and against known pharmacological treatments.Limitations / drawbacks
DCM is a hypothesis-driven approach for investigating the interactions among pre-defined regions of interest. It is not ideally suited for exploratory analyses. Although methods have been implemented for automatically searching over reduced models ( Bayesian Model Reduction) and for modelling large-scale brain networks, these methods require an explicit specification of model space. In neuroimaging, approaches such as psychophysiological interaction (PPI) analysis may be more appropriate for exploratory use; especially for discovering key nodes for subsequent DCM analysis. The variational Bayesian methods used for model estimation in DCM are based on the Laplace assumption, which treats the posterior over parameters as Gaussian. This approximation can fail in the context of highly non-linear models, where local minima may preclude the free energy from serving as a tight bound on log model evidence. Sampling approaches provide the gold standard; however, they are time consuming and have typically been used to validate the variational approximations in DCM.Software implementations
DCM is implemented in the Statistical Parametric Mapping software package, which serves as the canonical or reference implementation (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). It has been re-implemented and developed in the Tapas software collection (https://www.tnu.ethz.ch/en/software/tapas.html) and the VBA toolbox (https://mbb-team.github.io/VBA-toolbox/).References
Further reading