Dorothy Marshall
   HOME

TheInfoList



OR:

Dorothy Blanche Louisa Marshall (12 December 1868 – 1966) was a British chemist who worked at Girton,
Avery Hill Avery Hill is an area of South East London mainly within Royal Borough of Greenwich, and with some parts in the London Borough of Bexley. It is located east of Eltham and north west of Sidcup. It is believed that the area is named after an aviary ...
and the National Physical Laboratory. In 1904, she signed a petition for women to be admitted as a Fellow of the
Chemical Society The Chemical Society was a scientific society formed in 1841 (then named the Chemical Society of London) by 77 scientists as a result of increased interest in scientific matters. Chemist Robert Warington was the driving force behind its creation. ...
.


Life

Dorothy Marshall was born on 12 December 1868 in London. She was one of the three daughters of
Julian Marshall Julian Marshall (24 June 1836 – 21 November 1903) was an English music and print collector, tennis player and writer. Life Marshall was born in Headingley, Yorkshire to a flax-spinning family.#Faflak, Faflak & Wright, p. 51 His father, John ...
, connoisseur and collector, and Florence Ashton Thomas, musician and author . When Marshall was five years old, her father died at age 67. In 1922, her mother died.


Education and Work

Marshall was educated at King Edward VI High School for Girls, Birmingham (KEVI) and went to Bedford College in 1886. Two years later, Marshall went on to study chemistry, physics and electrical technology at
University College In a number of countries, a university college is a college institution that provides tertiary education but does not have full or independent university status. A university college is often part of a larger university. The precise usage varies ...
and graduated with a BSc (third class honours, chemistry) in 1891. As a postgraduate student at University College until 1894, Marshall studied heats of vaporisation of liquids . One of her three lengthy publications was co-authored with
William Ramsay Sir William Ramsay (; 2 October 1852 – 23 July 1916) was a Scottish chemist who discovered the noble gases and received the Nobel Prize in Chemistry in 1904 "in recognition of his services in the discovery of the inert gaseous elements ...
and the other one with
Ernest Howard Griffiths Ernest Howard Griffiths (15 June 1851 – 3 March 1932) was a British physicist born in Brecon, Wales. He was elected a Fellow of the Royal Society in 1895 and won its Hughes Medal in 1907. On his maternal side he was a descendant of the 17th- ...
, both appeared in 1896 and 1897. In 1896, Marshall was appointed as Demonstrator at
Girton College, Cambridge Girton College is one of the 31 constituent colleges of the University of Cambridge. The college was established in 1869 by Emily Davies and Barbara Bodichon as the first women's college in Cambridge. In 1948, it was granted full college status ...
and promoted to Resident Lecturer in Chemistry a year later. Marshall left Girton in 1906 to become a Senior Science Lecturer position at
Avery Hill College The University of Greenwich is a public university located in London London is the capital and List of urban areas in the United Kingdom, largest city of England and the United Kingdom, with a population of just under 9 million. It stands ...
. Appointed as Acting Principal in 1907, she resigned due to "illness" to refuse the position. In 1908, she became the Senior Science Mistress of Huddersfield Municipal High School. In 1913 she moved south to Clapham High School to take a position as Chemistry Mistress. Like many other women in chemistry, Marshall started war work in 1916, in aeronautical engineering. This work was more in the realm of applied physics or engineering than pure chemistry, as it was looking at the heat flows of aero-engines. She co-authored two reports in 1916–17 with Thomas E. Stanton, one on the effect of surface roughness on the heat transmitted from hot bodies to fluids flowing over them, and the other on effect of surface roughness on the heat transmitted from hot surfaces to fluids flowing over them, with special reference to the case of the gills of an air-cooled engine. She was thereby one of the first women to be working on the properties of aero-engines, although a number of women were taken on at the end of the war, such as Frances B. Bradfield. She worked with the National Physical Laboratory as scientific research assistant until the end of her career.


Awards

As an excellent student, Marshall won several awards. She took three silver medals in analytical, organic, and general chemistry in 1888–1889. The following year, she won a prize in philosophy and logic. In 1889, she held a Tuffnell Scholarship.


Works

In her papers on the heats of vaporisation of liquids, Marshall introduced a method of comparing directly the heats of evaporation of different liquids at their boiling points. The method used would conduct results that were not affected by errors in thermometer, changes in the specific heat of water, the capacity for heat of the calorimeter, and the loss or gain of heat by radiation. For setting up the apparatus, she wrote, "The liquid to be evaporated was contained in a small silver flask, connected with which was a spiral coil of silver tubing 18 feet in length. Both flask and spiral were within the calorimeter, and the water-vapour, after passing through the spiral, emerged from the apparatus at the temperature of the calorimeter. Surrounding the flask, and between it and the spiral, a coil of platinum-silver wire was arranged and flask, spiral, and coil were entirely immersed in a certain singularly limpid oil consisting of hydrocarbons only. "The calorimeter (which was filled to the roof with the oil, and the equality of temperature maintained by rapid stirring) was suspended by glass tubes within a steel chamber, whose walls were maintained at a constant temperature. So long, therefore, as the calorimeter and the surrounding walls were at equal temperatures, there was no loss or gain by radiation. If during an experiment the temperature of the surrounding walls changed, the method of experiment involved a corresponding change in the temperature of the calorimeter, and, therefore, some loss or gain of heat would be experienced. The apparatus was so designed that any such change in temperature was extremely small (in no case amounting to rhy°), yet, to estimate the loss or gain, it was necessary to know approximately the capacity for heat of the calorimeter and contents. Small differences between the temperature of the calorimeter and the surrounding walls would, during an experiment, be of no consequence provided that the oscillations were of such a nature that the mean temperature of the calorimeter was that of the surrounding space, and it will be found that this condition was fulfilled." By using equation L= /(m.e) V.10^8)/J/math> where L= heat in calories M = mass of liquid vaporised m = mass of copper deposited e= electrochemical equivalent of copper V = declustering potential in volts J = mechanical equivalent of heat Marshall calculated that the value of L for benzene is 94.4 cal


Publications

Although her early work was largely on the applied physics of heat and its effects, she later also published, as lead author or co-author, on other aspects of flow, such as boundary layer effects and eddies, which had great relevance to the streamlining of aircraft, some of which were widely cited by others. The Latent Heat of Evaporation of benzene. E. H. Griffiths M.A. F.R.S. & Miss Dorothy Marshall BSc The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Series 5. Volume 41, 1896 – Issue 248. Pages 1–37 II. A method of comparing directly the heats of evaporation of different liquids at their boiling-points. D Marshall, W Ramsay – The London, Edinburgh, and Dublin ..., 1896 – Taylor & Francis On the heats of vaporisation of liquids at their boiling-points. Miss Dorothy Marshall BSc (UCL). The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Series 5. Volume 43, 1897 – Issue 260. Pages 27–32 On the conditions at the boundary of a fluid in turbulent motion. Thomas Edward Stanton, Dorothy Marshall, and Constance N. Bryant. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. Published:3 August 1920 On the conditions at the boundary of a fluid in turbulent motion. Thomas Ernest Stanton; Dorothy Marshall; Constance N Bryant. London : His Majesty's Stationery Office, 1921. 19pp. Eddy systems behind discs. T E Stanton; Dorothy Marshall. London : H.M.S.O., 1932. Series: Reports and memoranda (Great Britain. Aeronautical Research Committee), no. 1358. A On the eddy system in the wake of flat circular plates in three dimensional flow. D Marshall, TE Stanton. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1931. The growth of waves on water due to the action of the wind. Thomas Edward Stanton, Dorothy Marshall, R. Houghton, and Joseph Ernest Petavel. 137. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 2 August 1932. http://doi.org/10.1098/rspa.1932.0136


References


Citations


Sources

* * ** * * * {{DEFAULTSORT:Marshall, Dorothy Alumni of Bedford College, London People associated with Girton College, Cambridge People educated at King Edward VI High School for Girls, Birmingham 1868 births 1966 deaths Scientists of the National Physical Laboratory (United Kingdom)