Divisor Topology
   HOME

TheInfoList



OR:

In mathematics, more specifically
general topology In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geomet ...
, the divisor topology is a specific
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
on the set X = \ of positive
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s greater than or equal to two. The divisor topology is the
poset topology In mathematics, the poset topology associated to a poset (''S'', ≤) is the Alexandrov topology (open sets are upper sets) on the poset of finite chains of (''S'', ≤), ordered by inclusion. Let ''V'' be a set of vertices. An abstract simplicia ...
for the
partial order In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
relation of
divisibility In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
of integers on X.


Construction

The sets S_n = \ for n = 2,3,... form a
basis Basis may refer to: Finance and accounting * Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates * Basis trading, a trading strategy consisting ...
for the divisor topologySteen & Seebach, example 57, p. 79-80 on X, where the notation x\mathop, n means x is a divisor of n. The open sets in this topology are the
lower set In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger ...
s for the partial order defined by x\leq y if x\mathop, y. The closed sets are the
upper set In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger ...
s for this partial order.


Properties

All the properties below are proved in or follow directly from the definitions. * The closure of a point x\in X is the set of all multiples of x. * Given a point x\in X, there is a smallest neighborhood of x, namely the basic open set S_x of divisors of x. So the divisor topology is an
Alexandrov topology In topology, an Alexandrov topology is a topology in which the intersection of any family of open sets is open. It is an axiom of topology that the intersection of any ''finite'' family of open sets is open; in Alexandrov topologies the finite rest ...
. * X is a T0 space. Indeed, given two points x and y with x, the open neighborhood S_x of x does not contain y. * X is a not a T1 space, as no point is closed. Consequently, X is not Hausdorff. * The
isolated point ] In mathematics, a point ''x'' is called an isolated point of a subset ''S'' (in a topological space ''X'') if ''x'' is an element of ''S'' and there exists a neighborhood of ''x'' which does not contain any other points of ''S''. This is equival ...
s of X are the
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s. * The set of prime numbers is
dense Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
in X. In fact, every dense open set must include every prime, and therefore X is a
Baire space In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are ...
. * X is
second-countable In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mat ...
. * X is
ultraconnected In mathematics, a topological space is said to be ultraconnected if no two nonempty closed sets are disjoint.PlanetMath Equivalently, a space is ultraconnected if and only if the closures of two distinct points always have non trivial intersecti ...
, since the closures of the singletons \ and \ contain the product xy as a common element. * Hence X is a
normal space In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. Th ...
. But X is not
completely normal In topology and related branches of mathematics, a normal space is a topological space ''X'' that satisfies Axiom T4: every two disjoint closed sets of ''X'' have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. Th ...
. For example, the singletons \ and \ are
separated set In topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets a ...
s (6 is not a multiple of 4 and 4 is not a multiple of 6), but have no disjoint open neighborhoods, as their smallest respective open neighborhoods meet non-trivially in S_6\cap S_4=S_2. * X is not a
regular space In topology and related fields of mathematics, a topological space ''X'' is called a regular space if every closed subset ''C'' of ''X'' and a point ''p'' not contained in ''C'' admit non-overlapping open neighborhoods. Thus ''p'' and ''C'' can ...
, as a basic neighborhood S_x is finite, but the closure of a point is infinite. * X is
connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ...
,
locally connected In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting entirely of open, connected sets. Background Throughout the history of topology, connectedness a ...
,
path connected In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that ...
and locally path connected. * X is a
scattered space In mathematics, a scattered space is a topological space ''X'' that contains no nonempty dense-in-itself subset. Equivalently, every nonempty subset ''A'' of ''X'' contains a point isolated in ''A''. A subset of a topological space is called a s ...
, as each nonempty subset has a first element, which is an isolated element of the set. * The
compact subset In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i. ...
s of X are the finite subsets, since any set A\subseteq X is covered by the collection of all basic open sets S_n, which are each finite, and if A is covered by only finitely many of them, it must itself be finite. In particular, X is not
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
. * X is
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
in the sense that each point has a compact neighborhood (S_x is finite). But points don't have closed compact neighborhoods (X is not locally relatively compact.)


References

* {{DEFAULTSORT:Divisor topology Topological spaces