HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
is distributive if it has finite products and finite coproducts and such that for every choice of objects A,B,C, the canonical map : mathit_A \times\iota_1, \mathit_A \times\iota_2: A\!\times\!B \,+ A\!\times\!C \to A\!\times\!(B+C) is an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
, and for all objects A, the canonical map 0 \to A\times 0 is an isomorphism (where 0 denotes the
initial object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element) ...
). Equivalently, if for every object A the endofunctor A \times - defined by B\mapsto A\times B preserves coproducts up to isomorphisms f. It follows that f and aforementioned canonical maps are equal for each choice of objects. In particular, if the
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
A \times - has a right adjoint (i.e., if the category is cartesian closed), it necessarily preserves all colimits, and thus any cartesian closed category with finite coproducts (i.e., any bicartesian closed category) is distributive.


Example

The
category of sets In the mathematical field of category theory, the category of sets, denoted by Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the functions from ''A'' to ''B'', and the composition of mor ...
is distributive. Let , , and be sets. Then :\begin A\times (B\amalg C) &= \ \\ &\cong \ \amalg \ \\ &= (A \times B) \amalg (A \times C) \end where \amalg denotes the coproduct in Set, namely the
disjoint union In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appe ...
, and \cong denotes a
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
. In the case where , , and are
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
s, this result reflects the
distributive property In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary ...
: the above sets each have
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
, A, \cdot (, B, +, C, )=, A, \cdot, B, + , A, \cdot, C, . The categories Grp and Ab are not distributive, even though they have both products and coproducts. An even simpler category that has both products and coproducts but is not distributive is the category of
pointed set In mathematics, a pointed set (also based set or rooted set) is an ordered pair (X, x_0) where X is a Set (mathematics), set and x_0 is an element of X called the base point (also spelled basepoint). Map (mathematics), Maps between pointed sets ...
s.


References


Further reading

* * Category theory {{categorytheory-stub