HOME

TheInfoList



OR:

Dissimilatory nitrate reduction to ammonium (DNRA), also known as nitrate/nitrite ammonification, is the result of
anaerobic respiration Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain. In aerobic organisms undergoing re ...
by chemoorganoheterotrophic microbes using
nitrate Nitrate is a polyatomic ion A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zer ...
(NO3) as an
electron acceptor An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. It is an oxidizing agent that, by virtue of its accepting electrons, is itself reduced in the process. Electron acceptors are sometimes mista ...
for respiration. In anaerobic conditions microbes which undertake DNRA oxidise organic matter and use nitrate (rather than oxygen) as an electron acceptor, reducing it to
nitrite The nitrite polyatomic ion, ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name ...
, then
ammonium The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary a ...
(NO3→NO2→NH4+). Dissimilatory nitrate reduction to ammonium is more common in
prokaryotes A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
but may also occur in
eukaryotic Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
microorganisms A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
. DNRA is a component of the terrestrial and oceanic
nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biologi ...
. Unlike
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
, it acts to conserve
bioavailable In pharmacology, bioavailability is a subcategory of absorption and is the fraction (%) of an administered drug that reaches the systemic circulation. By definition, when a medication is administered intravenously, its bioavailability is 100%. Ho ...
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
in the system, producing soluble
ammonium The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary a ...
rather than unreactive dinitrogen gas.


Background and process


Cellular process

Dissimilatory nitrate reduction to ammonium is a two step process, reducing NO3 to NO2 then NO2 to NH4+, though the reaction may begin with NO2 directly. Each step is mediated by a different
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
, the first step of dissimilatory nitrate reduction to ammonium is usually mediated by a
periplasm The periplasm is a concentrated gel-like matrix in the space between the inner cytoplasmic membrane and the bacterial outer membrane called the ''periplasmic space'' in gram-negative bacteria. Using cryo-electron microscopy it has been found that ...
ic
nitrate reductase Nitrate reductases are molybdoenzymes that reduce nitrate (NO) to nitrite (NO). This reaction is critical for the production of protein in most crop plants, as nitrate is the predominant source of nitrogen in fertilized soils. Types Euka ...
. The second step (respiratory NO2 reduction to NH4+) is mediated by cytochrome c nitrite reductase, occurring at the periplasmic membrane surface. Despite DNRA not producing N2O as an intermediate during nitrate reduction (as
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
does) N2O may still be released as a byproduct, thus DNRA may also act as a sink of fixed, bioavailable nitrogen. DNRA's production of N2O may be enhanced at higher pH levels.


Denitrification

Dissimilatory nitrate reduction to ammonium is similar to the process of
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
, though NO2 is reduced farther to NH4+ rather than to N2, transferring eight electrons. Both denitrifiers and nitrate ammonifiers are competing for NO3 in the environment. Despite the redox potential of dissimilatory nitrate reduction to ammonium being lower than
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
and producing less
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature and pr ...
, energy yield of denitrification may not be efficiently conserved in its series of enzymatic reactions and nitrate ammonifiers may achieve higher growth rates and outcompete denitrifiers. This is may be especially pronounced when NO3 is limiting compared to organic carbon, as organic carbon is oxidised more 'efficiently' per NO3 (as each molecule NO3 is reduced farther). The balance of denitrification and DNRA is important to the
nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biologi ...
of an environment as both use NO3 but, unlike
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
, which produces gaseous, non-bioavailable N2 (a sink of nitrogen), DNRA produces bioavailable, soluble NH4+.


Marine context


Marine microorganisms

As dissimilatory nitrate reduction to ammonium is an
anaerobic respiration Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain. In aerobic organisms undergoing re ...
process, marine
microorganism A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
s capable of performing DNRA are most commonly found in environments low in O2, such as
oxygen minimum zone The oxygen minimum zone (OMZ), sometimes referred to as the shadow zone, is the zone in which oxygen saturation in seawater in the ocean is at its lowest. This zone occurs at depths of about , depending on local circumstances. OMZs are found worl ...
s (OMZs) in the water column, or sediments with steep O2 gradients. DNRA has been documented in
prokaryote A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
s inhabiting the upper layer of marine sediments. For example,
benthic The benthic zone is the ecological region at the lowest level of a body of water such as an ocean, lake, or stream, including the sediment surface and some sub-surface layers. The name comes from ancient Greek, βένθος (bénthos), meaning "t ...
sulfur bacteria in genera such as '' Beggiatoa'' and ''
Thioploca ''Thioploca '' is a genus of filamentous sulphur-oxidizing bacteria which occurs along of coast off the west of South America. Was discovered in 1907 by R. Lauterborn classified as belonging to the order Thiotrichales, part of the Gammaproteobac ...
'' inhabit
anoxic The term anoxia means a total depletion in the level of oxygen, an extreme form of hypoxia or "low oxygen". The terms anoxia and hypoxia are used in various contexts: * Anoxic waters, sea water, fresh water or groundwater that are depleted of diss ...
sediments on continental shelves and obtain energy by oxidizing sulfide via DNRA. These bacteria are able to carry out DNRA using intracellular nitrate stored in vacuoles. The direct reduction of nitrate to ammonium via dissimilatory nitrate reduction, coupled with the direct conversion of ammonium to dinitrogen via
Anammox Anammox, an abbreviation for anaerobic ammonium oxidation, is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a grea ...
, has been attributed to significant nitrogen loss in certain parts of the ocean; this DNRA-Anammox coupling by DNRA and
Anammox Anammox, an abbreviation for anaerobic ammonium oxidation, is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a grea ...
bacteria can account for nitrate loss in areas with no detectable denitrification, such as in OMZs off the coast of Chile, Peru, and Namibia, as well as OMZs over the Omani Shelf in the
Arabian Sea The Arabian Sea ( ar, اَلْبَحرْ ٱلْعَرَبِيُّ, Al-Bahr al-ˁArabī) is a region of the northern Indian Ocean bounded on the north by Pakistan, Iran and the Gulf of Oman, on the west by the Gulf of Aden, Guardafui Channel ...
. While
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
is more energetically favourable than DNRA, there is evidence that bacteria using DNRA conserve more energy than denitrifiers, allowing them to grow faster. Thus, via DNRA-Anammox coupling, bacteria using DNRA and Anammox may be stronger competitors for substrates than denitrifiers. While dissimilatory nitrate reduction to ammonium is more commonly associated with prokaryotes, recent research has found increasing evidence of DNRA in various
eukaryotic Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
microorganisms. Of the known DNRA-capable fungal species, one is found in marine ecosystems; an isolate of
ascomycete Ascomycota is a phylum of the kingdom Fungi that, together with the Basidiomycota, forms the subkingdom Dikarya. Its members are commonly known as the sac fungi or ascomycetes. It is the largest phylum of Fungi, with over 64,000 species. The defi ...
''
Aspergillus terreus ''Aspergillus terreus'', also known as ''Aspergillus terrestris'', is a fungus (mold) found worldwide in soil. Although thought to be strictly asexual until recently, ''A. terreus'' is now known to be capable of sexual reproduction. This saprotr ...
'' from an OMZ of the Arabian Sea has been found to be capable of performing DNRA under anoxic conditions. Evidence of DNRA has also been found in marine
foraminifers Foraminifera (; Latin for "hole bearers"; informally called "forams") are single-celled organisms, members of a phylum or class of amoeboid protists characterized by streaming granular ectoplasm for catching food and other uses; and commonly an ...
. More recently, it has been discovered that using intracellular nitrate stores,
diatom A diatom (Neo-Latin ''diatoma''), "a cutting through, a severance", from el, διάτομος, diátomos, "cut in half, divided equally" from el, διατέμνω, diatémno, "to cut in twain". is any member of a large group comprising sev ...
s can carry out dissimilatory nitrate reduction to ammonium, likely for short-term survival or for entering resting stages, thereby allowing them to persist in dark and anoxic conditions. However, their metabolism is probably not sustained by DNRA for long-term survival during resting stages, as these resting stages often can be much longer than their intracellular nitrate supply would last. The use of DNRA by diatoms is a possible explanation for how they can survive buried in dark, anoxic sediment layers on the ocean floor, without being able to carry out
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
or
aerobic respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
. Currently, DNRA is known to be carried out by the benthic diatom '' Amphora coffeaeformis'', as well as the pelagic diatom ''
Thalassiosira weissflogii ''Thalassiosira weissflogii'' is a species of centric diatoms, a unicellular microalga. It is found in marine environments and also in inland waters in many parts of the world. It is actively studied because it may use C4-plant style strategies ...
''. As diatoms are a significant source of oceanic
primary production In ecology, primary production is the synthesis of organic compounds from atmospheric or aqueous carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through c ...
, the ability for diatoms to perform DNRA has major implications on their ecological role, as well as their role in the marine
nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biologi ...
.


Ecological role

Unlike
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
, which removes reactive nitrogen from the system, dissimilatory nitrate reduction to ammonium conserves nitrogen within the system. Since DNRA takes
nitrate Nitrate is a polyatomic ion A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zer ...
and converts it into
ammonium The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary a ...
, it does not produce N2 or N2O. Consequently, DNRA recycles nitrogen rather than causing N-loss, which leads to more sustainable
primary production In ecology, primary production is the synthesis of organic compounds from atmospheric or aqueous carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through c ...
and
nitrification ''Nitrification'' is the biological oxidation of ammonia to nitrite followed by the oxidation of the nitrite to nitrate occurring through separate organisms or direct ammonia oxidation to nitrate in comammox bacteria. The transformation of amm ...
. Within an ecosystem, denitrification and DNRA can occur simultaneously. Usually DNRA is about 15% of the total nitrate reduction rate, which includes both DNRA and denitrification. However, the relative importance of each process is influenced by environmental variables. For example, DNRA is found to be three to seven times higher in sediments under fish cages than nearby sediments due to the accumulation of
organic carbon Total organic carbon (TOC) is the amount of carbon found in an organic compound and is often used as a non-specific indicator of water quality or cleanliness of pharmaceutical manufacturing equipment. TOC may also refer to the amount of organic c ...
. Conditions where dissimilatory nitrate reduction to ammonium is favoured over denitrification in coastal ecosystems include the following: * High carbon loads and high sulfate reduction rates (e.g. areas of coastal or river runoff) * Unvegetated subtidal sediment * Marshes with high temperatures and sulfate reduction rates (producing high levels of sulfides), e.g. mangroves * High organic matter deposition (e.g. aquacultures) * Ecosystems where organic matter has a high C/N ratio * High
electron donor In chemistry, an electron donor is a chemical entity that donates electrons to another compound. It is a reducing agent that, by virtue of its donating electrons, is itself oxidized in the process. Typical reducing agents undergo permanent chem ...
(organic carbon) to acceptor (nitrate) ratio * High summer temperatures and low NO3 concentrations High sulfide concentration can inhibit the processes of nitrification and denitrification. Meanwhile, it can also enhance dissimilatory nitrate reduction to ammonium since high sulfide concentration provides more electron donors. Ecosystems where DNRA is dominant have less nitrogen loss, resulting in higher levels of preserved nitrogen in the system. Within sediments, the total dissimilatory nitrate reduction to ammonium rate is higher in spring and summer compared to autumn. Prokaryotes are the major contributors for DNRA during summer, while eukaryotes and prokaryotes contribute similarly to DNRA during spring and autumn. Potential benefits of using dissimilatory nitrate reduction to ammonium for individual organisms may include the following:Tiedje, J. M. (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. p. 179-244. In A. J. B. Zehnder (ed.), Environmental Microbiology of Anaerobes. John Wiley and Sons, N.Y. *
Detoxification Detoxification or detoxication (detox for short) is the physiological or medicinal removal of toxic substances from a living organism, including the human body, which is mainly carried out by the liver. Additionally, it can refer to the period of ...
of accumulated
nitrite The nitrite polyatomic ion, ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name ...
: if an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
uses nitrate as an
electron acceptor An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. It is an oxidizing agent that, by virtue of its accepting electrons, is itself reduced in the process. Electron acceptors are sometimes mista ...
and produces
nitrite The nitrite polyatomic ion, ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name ...
, it can result in high levels of intracellular nitrite concentrations that can be toxic to the cell. DNRA does not store nitrite within the cell, reducing the level of toxicity. * DNRA produces an electron sink that can be used for NADH re-oxidation: the need for having an electron sink is more apparent when the environment is nitrate-limited.


Changes to f-ratio calculation

The balance of dissimilatory nitrate reduction to ammonium and
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
alters the accuracy of f-ratio calculations. The f-ratio is used to quantify the efficiency of the
biological pump The biological pump (or ocean carbon biological pump or marine biological carbon pump) is the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments.Sigman DM & GH ...
, which reflects sequestering of carbon from the atmosphere to the deep sea. The f-ratio is calculated using estimates of 'new production' (primary productivity stimulated by nutrients entering the photic zone from outside the photic zone, for example from the deep ocean) and 'regenerated production' (primary productivity stimulated by nutrients already in the photic zone, released by
remineralisation In biogeochemistry, remineralisation (or remineralization) refers to the breakdown or transformation of organic matter (those molecules derived from a biological source) into its simplest inorganic forms. These transformations form a crucial link ...
). Calculations of the f-ratio use the nitrogen species stimulating primary productivity as a proxy for the type of production occurring; productivity stimulated by NH4+ rather than NO3 is 'regenerated production'. DNRA also produces NH4+ (in addition to remineralisation) but from organic matter which has been exported from the photic zone; this may be subsequently reintroduced by mixing or
upwelling Upwelling is an oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water from deep water towards the ocean surface. It replaces the warmer and usually nutrient-depleted surface water. The nutr ...
of deeper water back to the surface, thereby, stimulating
primary productivity In ecology, primary production is the synthesis of organic compounds from atmospheric or aqueous carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through c ...
; thus, in areas where high amounts of DNRA is occurring, f-ratio calculations will not be accurate.


References

{{Reflist, 30em Anaerobic digestion Cellular respiration