HOME

TheInfoList



OR:

In mathematics, specifically in
spectral theory In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result o ...
, a discrete spectrum of a
closed linear operator In mathematics, particularly in functional analysis and topology, closed graph is a property of functions. A function between topological spaces has a closed graph if its graph is a closed subset of the product space . A related property is ...
is defined as the set of
isolated point ] In mathematics, a point ''x'' is called an isolated point of a subset ''S'' (in a topological space ''X'') if ''x'' is an element of ''S'' and there exists a neighborhood of ''x'' which does not contain any other points of ''S''. This is equival ...
s of its spectrum such that the rank (linear algebra), rank of the corresponding
Riesz projector In mathematics, or more specifically in spectral theory, the Riesz projector is the projector onto the eigenspace corresponding to a particular eigenvalue of an operator (or, more generally, a projector onto an invariant subspace corresponding to an ...
is finite.


Definition

A point \lambda\in\C in the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors i ...
\sigma(A) of a
closed linear operator In mathematics, particularly in functional analysis and topology, closed graph is a property of functions. A function between topological spaces has a closed graph if its graph is a closed subset of the product space . A related property is ...
A:\,\mathfrak\to\mathfrak in the
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
\mathfrak with
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined **Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function * Do ...
\mathfrak(A)\subset\mathfrak is said to belong to ''discrete spectrum'' \sigma_(A) of A if the following two conditions are satisfied: # \lambda is an isolated point in \sigma(A); # The rank (linear algebra), rank of the corresponding
Riesz projector In mathematics, or more specifically in spectral theory, the Riesz projector is the projector onto the eigenspace corresponding to a particular eigenvalue of an operator (or, more generally, a projector onto an invariant subspace corresponding to an ...
P_\lambda=\frac\oint_\Gamma(A-z I_)^\,dz is finite. Here I_ is the
identity operator Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), a ...
in the Banach space \mathfrak and \Gamma\subset\C is a smooth simple closed counterclockwise-oriented curve bounding an open region \Omega\subset\C such that \lambda is the only point of the spectrum of A in the closure of \Omega; that is, \sigma(A)\cap\overline=\.


Relation to normal eigenvalues

The discrete spectrum \sigma_(A) coincides with the set of normal eigenvalues of A: :\sigma_(A)=\.


Relation to isolated eigenvalues of finite algebraic multiplicity

In general, the rank of the Riesz projector can be larger than the dimension of the root lineal \mathfrak_\lambda of the corresponding eigenvalue, and in particular it is possible to have \mathrm\,\mathfrak_\lambda<\infty, \mathrm\,P_\lambda=\infty. So, there is the following inclusion: :\sigma_(A)\subset\. In particular, for a
quasinilpotent operator In operator theory, a bounded operator ''T'' on a Hilbert space is said to be nilpotent if ''Tn'' = 0 for some ''n''. It is said to be quasinilpotent or topologically nilpotent if its spectrum ''σ''(''T'') = . Examples In the finite-dimensional ...
:Q:\,l^2(\N)\to l^2(\N),\qquad Q:\,(a_1,a_2,a_3,\dots)\mapsto (0,a_1/2,a_2/2^2,a_3/2^3,\dots), one has \mathfrak_\lambda(Q)=\, \mathrm\,P_\lambda=\infty, \sigma(Q)=\, \sigma_(Q)=\emptyset.


Relation to the point spectrum

The discrete spectrum \sigma_(A) of an operator A is not to be confused with the
point spectrum In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number \lambda is ...
\sigma_(A), which is defined as the set of
eigenvalues In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
of A. While each point of the discrete spectrum belongs to the point spectrum, :\sigma_(A)\subset\sigma_(A), the converse is not necessarily true: the point spectrum does not necessarily consist of isolated points of the spectrum, as one can see from the example of the ''left shift operator'', L:\,l^2(\N)\to l^2(\N), \quad L:\,(a_1,a_2,a_3,\dots)\mapsto (a_2,a_3,a_4,\dots). For this operator, the point spectrum is the unit disc of the complex plane, the spectrum is the closure of the unit disc, while the discrete spectrum is empty: :\sigma_(L)=\mathbb_1, \qquad \sigma(L)=\overline; \qquad \sigma_(L)=\emptyset.


See also

*
Spectrum (functional analysis) In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number \lambda is ...
*
Decomposition of spectrum (functional analysis) The spectrum of a linear operator T that operates on a Banach space X (a fundamental concept of functional analysis) consists of all scalars \lambda such that the operator T-\lambda does not have a bounded inverse on X. The spectrum has a standar ...
*
Normal eigenvalue In mathematics, specifically in spectral theory, an eigenvalue of a closed linear operator is called normal if the space admits a decomposition into a direct sum of a finite-dimensional generalized eigenspace and an invariant subspace where A-\lam ...
*
Essential spectrum In mathematics, the essential spectrum of a bounded operator (or, more generally, of a densely defined closed linear operator) is a certain subset of its spectrum, defined by a condition of the type that says, roughly speaking, "fails badly to be i ...
*
Spectrum of an operator In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number \lambda is ...
*
Resolvent formalism In mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the fr ...
*
Riesz projector In mathematics, or more specifically in spectral theory, the Riesz projector is the projector onto the eigenspace corresponding to a particular eigenvalue of an operator (or, more generally, a projector onto an invariant subspace corresponding to an ...
*
Fredholm operator In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm. By definition, a Fredholm operator is a bounded linear operator ''T'' : ''X ...
*
Operator theory In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operat ...


References

{{Functional analysis Spectral theory