Direct Sum Of Topological Groups
   HOME

TheInfoList



OR:

In mathematics, a
topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two st ...
G is called the topological direct sum of two
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
s H_1 and H_2 if the map \begin H_1\times H_2 &\longrightarrow G \\ (h_1,h_2) &\longmapsto h_1 h_2 \end is a topological isomorphism, meaning that it is a
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomor ...
and a group isomorphism.


Definition

More generally, G is called the direct sum of a finite set of
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
s H_1, \ldots, H_n of the map \begin \prod^n_ H_i &\longrightarrow G \\ (h_i)_ &\longmapsto h_1 h_2 \cdots h_n \end is a topological isomorphism. If a topological group G is the topological direct sum of the family of subgroups H_1, \ldots, H_n then in particular, as an abstract group (without topology) it is also the direct sum (in the usual way) of the family H_i.


Topological direct summands

Given a topological group G, we say that a subgroup H is a topological direct summand of G (or that splits topologically from G) if and only if there exist another subgroup K \leq G such that G is the direct sum of the subgroups H and K. A the subgroup H is a topological direct summand if and only if the extension of topological groups 0 \to H\stackrel G\stackrel G/H\to 0 splits, where i is the natural inclusion and \pi is the natural projection.


Examples

Suppose that G is a
locally compact abelian group In several mathematical areas, including harmonic analysis, topology, and number theory, locally compact abelian groups are abelian groups which have a particularly convenient topology on them. For example, the group of integers (equipped with the ...
that contains the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
\mathbb as a subgroup. Then \mathbb is a topological direct summand of G. The same assertion is true for the
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
\RArmacost, David L. The structure of locally compact abelian groups. Monographs and Textbooks in Pure and Applied Mathematics, 68. Marcel Dekker, Inc., New York, 1981. vii+154 pp. MR0637201 (83h:22010)


See also

* * *


References

{{TopologicalVectorSpaces Topological groups Topology