HOME

TheInfoList



OR:

Dinoflagellate The dinoflagellates (Greek δῖνος ''dinos'' "whirling" and Latin ''flagellum'' "whip, scourge") are a monophyletic group of single-celled eukaryotes constituting the phylum Dinoflagellata and are usually considered algae. Dinoflagellates are ...
luciferase (, ''
Gonyaulax ''Gonyaulax'' is a genus of dinoflagellates with the type species ''Gonyaulax spinifera'' (Claparède et Lachmann) Diesing. ''Gonyaulax'' belongs to red dinoflagellates and commonly causes red tides. It secretes a poisonous toxin known as "saxit ...
luciferase'') is a specific
luciferase Luciferase is a generic term for the class of oxidative enzymes that produce bioluminescence, and is usually distinguished from a photoprotein. The name was first used by Raphaël Dubois who invented the words ''luciferin'' and ''luciferase'', ...
, an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
with
systematic name A systematic name is a name given in a systematic way to one unique group, organism, object or chemical substance, out of a specific population or collection. Systematic names are usually part of a nomenclature. A semisystematic name or semitrivial ...
''dinoflagellate-luciferin:oxygen 132-oxidoreductase''. Dinoflagellate luciferase reaction.JPG : ''
dinoflagellate The dinoflagellates (Greek δῖνος ''dinos'' "whirling" and Latin ''flagellum'' "whip, scourge") are a monophyletic group of single-celled eukaryotes constituting the phylum Dinoflagellata and are usually considered algae. Dinoflagellates are ...
''
luciferin Luciferin (from the Latin ''lucifer'', "light-bearer") is a generic term for the light-emitting compound found in organisms that generate bioluminescence. Luciferins typically undergo an enzyme-catalyzed reaction with molecular oxygen. The result ...
+ O2 \rightleftharpoons oxidized ''dinoflagellate'' luciferin + H2O + hnu


Mechanism of Reaction

The EC number of dinoflagellate luciferase is 1.13.12.18. This number denotes that dinoflagellate luciferase is an oxidoreductase that acts on single donors with incorporation of molecular oxygen (oxygenases) that are not necessarily derived from O2, with incorporation of one atom of oxygen (internal monooxygenases or internal mixed-function oxidases).


Structure

''Dinoflagellate'' luciferase is a single protein with three luciferase domains and an N-terminal domain. The three domains have been shown to be 1.8-A
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystal, crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pat ...
that contain
beta barrel In protein structures, a beta barrel is a beta sheet composed of tandem repeats that twists and coils to form a closed toroidal structure in which the first strand is bonded to the last strand (hydrogen bond). Beta-strands in many beta-barrels are ...
pocketa that act as
active sites In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate (binding site) a ...
with each domain preceded by a regulatory three
helix bundle A helix bundle is a small protein fold composed of several alpha helices that are usually nearly parallel or antiparallel to each other. Three-helix bundles Three-helix bundles are among the smallest and fastest known cooperatively folding struct ...
. These helical bundles contain important histidine residues that play a role in the pH regulation of dinoflagellate luciferase activity. Specifically, the presence of N-terminal intramolecularly conserved histidine residues are shown to be responsible for the loss of activity of the enzyme at high pH.Li, L., Liu, L., Hong, R., Robertson, D., & Hastings, J. W. (2001).
N-terminal The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
intramolecularly conserved histidine residues of three domains in Gonyaulax luciferase are responsible for loss of activity in the
alkaline In chemistry, an alkali (; from ar, القلوي, al-qaly, lit=ashes of the saltwort) is a base (chemistry), basic, ionic compound, ionic salt (chemistry), salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as ...
region. Biochemistry, 40(6), 1844–1849. https://doi.org/10.1021/bi002094v
Protonation of these histidine residues alters the conformation of each domain to allow the substrate luciferin to enter the enlarged pocket. This
conformational change In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or oth ...
must occur in order to provide access and space for the ligand to enter the active site. At pH 8, the histidine residues remain unprotonated, interacting with a network of
hydrogen bonds In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
that block substrate access to the active site. This blockage is overcome by
protonation In chemistry, protonation (or hydronation) is the adding of a proton (or hydron, or hydrogen cation), (H+) to an atom, molecule, or ion, forming a conjugate acid. (The complementary process, when a proton is removed from a Brønsted–Lowry acid, ...
of histidine residues or by
experimental An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when ...
replacement of histidine residues with
alanine Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side c ...
residues. Realistically, alanine replacement does not occur spontaneously; however, this experimental result provides further evidence that the larger histidine residues block access to the active site of the enzyme. The N-terminal domain is conserved between dinoflagellate luciferase and luciferin binding proteins. This region may be where luciferin binding proteins interact with luciferase in order to allow the
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
, usually luciferin, to enter the active site.


Reaction Conditions

Dinoflagellate luciferase is active in slightly acidic environments but in most cases requires the luciferin binding protein (LBP) to unbind from the dinoflagellate luciferin substrate; however, LBP binds luciferin at
neutral Neutral or neutrality may refer to: Mathematics and natural science Biology * Neutral organisms, in ecology, those that obey the unified neutral theory of biodiversity Chemistry and physics * Neutralization (chemistry), a chemical reaction in ...
to
alkaline In chemistry, an alkali (; from ar, القلوي, al-qaly, lit=ashes of the saltwort) is a base (chemistry), basic, ionic compound, ionic salt (chemistry), salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as ...
conditions. Although the primary mechanism is unknown, voltage-gated ion channels on scintillon
membranes A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
open, allowing an influx of
protons A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
to enter the
organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
lowering the pH sufficiently for dinoflagellate luciferase to activate. G-protein coupled
receptor Receptor may refer to: * Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a ...
s and
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to ...
ions also play a role in stimulating bioluminescence.


Applications

Dinoflagellate luciferase is found in bioluminescent dinoflagellates, eukaryotic
protists A protist () is any eukaryotic organism (that is, an organism whose cells contain a cell nucleus) that is not an animal, plant, or fungus. While it is likely that protists share a common ancestor (the last eukaryotic common ancestor), the excl ...
that are found in ocean surface waters. Dinoflagellate luciferase allows these organisms to emit
blue light Blue Light or Blue light may refer to: Science and technology * Portion of the visible spectrum related to the blue color ** Blue laser ** Blue LED * Cherenkov radiation, the physical phenomenon responsible for the characteristic blue glow in nucl ...
(max 475 nm) after stimulation. The light produced is theorized to act as a defense against predators or lure for prey. These organisms utilize
scintillons Scintillons are small structures in cytoplasm that produce light. Among bioluminescent organisms, only dinoflagellates have scintillons. Description Dinoflagellate light production Marine dinoflagellates at night can emit blue light by biolumi ...
which are specialized organelles that project from the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. The ...
into the
acidic In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
vacuole A vacuole () is a membrane-bound organelle which is present in plant and fungal cells and some protist, animal, and bacterial cells. Vacuoles are essentially enclosed compartments which are filled with water containing inorganic and organic mo ...
to produce this light.Valiadi, M., & Iglesias-Rodriguez, D. (2013). Understanding Bioluminescence in Dinoflagellates-How Far Have We Come?. Microorganisms, 1(1), 3–25. https://doi.org/10.3390/microorganisms1010003 This is where the dinoflagellate luciferase enzyme is contained.


References


External links

* {{Portal bar, Biology, border=no EC 1.13.12