In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, a line is an infinitely long object with no width, depth, or
curvature. Thus, lines are
one-dimensional objects, though they may exist in
two
2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultur ...
,
three
3 is a number, numeral, and glyph.
3, three, or III may also refer to:
* AD 3, the third year of the AD era
* 3 BC, the third year before the AD era
* March, the third month
Books
* '' Three of Them'' (Russian: ', literally, "three"), a 1901 ...
, or higher
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
spaces. The word ''line'' may also refer to a
line segment in everyday life, which has two
points to denote its ends. Lines can be referred by two points that lay on it (e.g.,
) or by a single letter (e.g.,
).
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
described a line as "breadthless length" which "lies evenly with respect to the points on itself"; he introduced several
postulate
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s as basic unprovable properties from which he constructed all of geometry, which is now called
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
to avoid confusion with other geometries which have been introduced since the end of the 19th century (such as
non-Euclidean,
projective and
affine geometry
In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle.
As the notion of '' parallel lines'' is one of the main properties that is ...
).
In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in
analytic geometry, a line in the plane is often defined as the set of points whose coordinates satisfy a given
linear equation, but in a more abstract setting, such as
incidence geometry
In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An ''incide ...
, a line may be an independent object, distinct from the set of points which lie on it.
When a geometry is described by a set of
axioms, the notion of a line is usually left undefined (a so-called
primitive object). The properties of lines are then determined by the axioms which refer to them. One advantage to this approach is the flexibility it gives to users of the geometry. Thus in
differential geometry, a line may be interpreted as a
geodesic (shortest path between points), while in some
projective geometries, a line is a 2-dimensional vector space (all linear combinations of two independent vectors). This flexibility also extends beyond mathematics and, for example, permits physicists to think of the path of a light ray as being a line.
Properties
When geometry was first formalised by
Euclid
Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
in the ''
Elements'', he defined a general line (now called a ''
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
'') to be "breadthless length" with a straight line being a line "which lies evenly with the points on itself".
These definitions serve little purpose, since they use terms which are not by themselves defined. In fact, Euclid himself did not use these definitions in this work, and probably included them just to make it clear to the reader what was being discussed. In modern geometry, a line is simply taken as an undefined object with properties given by
axioms,
but is sometimes defined as a set of points obeying a linear relationship when some other fundamental concept is left undefined.
In an
axiomatic formulation of Euclidean geometry, such as that of
Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many ...
(Euclid's original axioms contained various flaws which have been corrected by modern mathematicians),
a line is stated to have certain properties which relate it to other lines and
points. For example, for any two distinct points, there is a unique line containing them, and any two distinct lines intersect in at most one point.
In two
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
s (i.e., the Euclidean
plane
Plane(s) most often refers to:
* Aero- or airplane, a powered, fixed-wing aircraft
* Plane (geometry), a flat, 2-dimensional surface
Plane or planes may also refer to:
Biology
* Plane (tree) or ''Platanus'', wetland native plant
* ''Planes' ...
), two lines which do not intersect are called
parallel
Parallel is a geometric term of location which may refer to:
Computing
* Parallel algorithm
* Parallel computing
* Parallel metaheuristic
* Parallel (software), a UNIX utility for running programs in parallel
* Parallel Sysplex, a cluster of ...
. In higher dimensions, two lines that do not intersect are parallel if they are contained in a
plane
Plane(s) most often refers to:
* Aero- or airplane, a powered, fixed-wing aircraft
* Plane (geometry), a flat, 2-dimensional surface
Plane or planes may also refer to:
Biology
* Plane (tree) or ''Platanus'', wetland native plant
* ''Planes' ...
, or
skew
Skew may refer to:
In mathematics
* Skew lines, neither parallel nor intersecting.
* Skew normal distribution, a probability distribution
* Skew field or division ring
* Skew-Hermitian matrix
* Skew lattice
* Skew polygon, whose vertices do not ...
if they are not.
On an
Euclidean plane, a line can be represented as a boundary between two regions. Any collection of finitely many lines partitions the plane into
convex polygon
In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a ...
s (possibly unbounded); this partition is known as an
arrangement of lines
In music, an arrangement is a musical adaptation of an existing composition. Differences from the original composition may include reharmonization, melodic paraphrasing, orchestration, or formal development. Arranging differs from orchestr ...
.
In higher dimensions
In
three-dimensional space
Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informa ...
, a
first degree equation in the variables ''x'', ''y'', and ''z'' defines a plane, so two such equations, provided the planes they give rise to are not parallel, define a line which is the intersection of the planes. More generally, in ''n''-dimensional space ''n''−1 first-degree equations in the ''n''
coordinate
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
variables define a line under suitable conditions.
In more general
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
, R
''n'' (and analogously in every other
affine space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
), the line ''L'' passing through two different points ''a'' and ''b'' (considered as vectors) is the subset
The direction of the line is from ''a'' (''t'' = 0) to ''b'' (''t'' = 1), or in other words, in the direction of the vector ''b'' − ''a''. Different choices of ''a'' and ''b'' can yield the same line.
Collinear points
Three points are said to be ''collinear'' if they lie on the same line. Three points ''
usually'' determine a
plane
Plane(s) most often refers to:
* Aero- or airplane, a powered, fixed-wing aircraft
* Plane (geometry), a flat, 2-dimensional surface
Plane or planes may also refer to:
Biology
* Plane (tree) or ''Platanus'', wetland native plant
* ''Planes' ...
, but in the case of three collinear points this does ''not'' happen.
In
affine coordinates
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
, in ''n''-dimensional space the points ''X'' = (''x''
1, ''x''
2, ..., ''x''
''n''), ''Y'' = (''y''
1, ''y''
2, ..., ''y''
''n''), and ''Z'' = (''z''
1, ''z''
2, ..., ''z''
''n'') are collinear if the
matrix
Matrix most commonly refers to:
* ''The Matrix'' (franchise), an American media franchise
** ''The Matrix'', a 1999 science-fiction action film
** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
has a
rank
Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as:
Level or position in a hierarchical organization
* Academic rank
* Diplomatic rank
* Hierarchy
* ...
less than 3. In particular, for three points in the plane (''n'' = 2), the above matrix is square and the points are collinear if and only if its
determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if a ...
is zero.
Equivalently for three points in a plane, the points are collinear if and only if the slope between one pair of points equals the slope between any other pair of points (in which case the slope between the remaining pair of points will equal the other slopes). By extension, ''k'' points in a plane are collinear if and only if any (''k''–1) pairs of points have the same pairwise slopes.
In
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, the
Euclidean distance
In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points.
It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefor ...
''d''(''a'',''b'') between two points ''a'' and ''b'' may be used to express the collinearity between three points by:
:The points ''a'', ''b'' and ''c'' are collinear if and only if ''d''(''x'',''a'') = ''d''(''c'',''a'') and ''d''(''x'',''b'') = ''d''(''c'',''b'') implies ''x'' = ''c''.
However, there are other notions of distance (such as the
Manhattan distance
A taxicab geometry or a Manhattan geometry is a geometry whose usual distance function or metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the absolute differences of their Cartesian co ...
) for which this property is not true.
In the geometries where the concept of a line is a
primitive notion
In mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an ...
, as may be the case in some
synthetic geometries, other methods of determining collinearity are needed.
Types
In a sense, all lines in Euclidean geometry are equal, in that, without coordinates, one can not tell them apart from one another. However, lines may play special roles with respect to other objects in the geometry and be divided into types according to that relationship. For instance, with respect to a
conic
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a specia ...
(a
circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is con ...
,
ellipse,
parabola
In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exact ...
, or
hyperbola
In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, ca ...
), lines can be:
*
tangent line
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
s, which touch the conic at a single point;
*
secant line
Secant is a term in mathematics derived from the Latin ''secare'' ("to cut"). It may refer to:
* a secant line, in geometry
* the secant variety, in algebraic geometry
* secant (trigonometry) (Latin: secans), the multiplicative inverse (or recipr ...
s, which intersect the conic at two points and pass through its interior;
[.]
* exterior lines, which do not meet the conic at any point of the Euclidean plane; or
* a
directrix, whose distance from a point helps to establish whether the point is on the conic.
In the context of determining
parallelism in Euclidean geometry, a
transversal is a line that intersects two other lines that may or not be parallel to each other.
For more general
algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane ...
s, lines could also be:
* ''i''-secant lines, meeting the curve in ''i'' points counted without multiplicity, or
*
asymptote
In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related context ...
s, which a curve approaches arbitrarily closely without touching it.
With respect to
triangles
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non-collinear ...
we have:
* the
Euler line
In geometry, the Euler line, named after Leonhard Euler (), is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, includ ...
,
* the
Simson line
In geometry, given a triangle and a point on its circumcircle, the three closest points to on lines , , and are collinear. The line through these points is the Simson line of , named for Robert Simson. The concept was first published, howeve ...
s, and
*
central lines.
For a
convex
Convex or convexity may refer to:
Science and technology
* Convex lens, in optics
Mathematics
* Convex set, containing the whole line segment that joins points
** Convex polygon, a polygon which encloses a convex set of points
** Convex polytop ...
quadrilateral
In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, ...
with at most two parallel sides, the
Newton line
In Euclidean geometry the Newton line is the line that connects the midpoints of the two diagonals in a convex quadrilateral with at most two parallel sides.Claudi Alsina, Roger B. Nelsen: ''Charming Proofs: A Journey Into Elegant Mathematics''. ...
is the line that connects the midpoints of the two
diagonal
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek δ ...
s.
[ ()]
For a
hexagon
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.
Regular hexagon
A '' regular hexagon'' has ...
with vertices lying on a conic we have the
Pascal line
In projective geometry, Pascal's theorem (also known as the ''hexagrammum mysticum theorem'') states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined b ...
and, in the special case where the conic is a pair of lines, we have the
Pappus line.
Parallel lines
In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. ''Parallel curves'' are curves that do not touch each other or int ...
are lines in the same plane that never cross.
Intersecting lines
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct line (geometry), li ...
share a single point in common. Coincidental lines coincide with each other—every point that is on either one of them is also on the other.
Perpendicular lines are lines that intersect at
right angles.
In
three-dimensional space
Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informa ...
,
skew lines
In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. Two lines that both lie in the sa ...
are lines that are not in the same plane and thus do not intersect each other.
In axiomatic systems
The concept of line is often considered in geometry as a
primitive notion
In mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an ...
in
axiomatic systems,
meaning it is not being defined by other concepts. In those situations where a line is a defined concept, as in
coordinate geometry
In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.
Analytic geometry is used in physics and engineerin ...
, some other fundamental ideas are taken as primitives. When the line concept is a primitive, the behaviour and properties of lines are dictated by the
axioms which they must satisfy.
In a non-axiomatic or simplified axiomatic treatment of geometry, the concept of a primitive notion may be too abstract to be dealt with. In this circumstance, it is possible to provide a ''description'' or ''mental image'' of a primitive notion, to give a foundation to build the notion on which would formally be based on the (unstated) axioms. Descriptions of this type may be referred to, by some authors, as definitions in this informal style of presentation. These are not true definitions, and could not be used in formal proofs of statements. The "definition" of line in
Euclid's Elements
The ''Elements'' ( grc, Στοιχεῖα ''Stoikheîa'') is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt 300 BC. It is a collection of definitions, postulat ...
falls into this category.
Even in the case where a specific geometry is being considered (for example,
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
), there is no generally accepted agreement among authors as to what an informal description of a line should be when the subject is not being treated formally.
Definition
Linear equation
Lines in a Cartesian plane or, more generally, in
affine coordinates
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
, are characterized by linear equations. More precisely, every line
(including vertical lines) is the set of all points whose
coordinates (''x'', ''y'') satisfy a linear equation; that is,
where ''a'', ''b'' and ''c'' are fixed
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s (called
coefficients) such that ''a'' and ''b'' are not both zero. Using this form, vertical lines correspond to equations with ''b'' = 0.
One can further suppose either or , by dividing everything by if it is not zero.
There are many variant ways to write the equation of a line which can all be converted from one to another by algebraic manipulation. The above form is sometimes called the ''standard form''. If the constant term is put on the left, the equation becomes
and this is sometimes called the ''general form'' of the equation. However, this terminology is not universally accepted, and many authors do not distinguish these two forms.
These forms are generally named by the type of information (data) about the line that is needed to write down the form. Some of the important data of a line is its slope,
x-intercept
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or e ...
, known points on the line and y-intercept.
The equation of the line passing through two different points
and
may be written as
If , this equation may be rewritten as
or
In
two dimensions
In mathematics, a plane is a Euclidean ( flat), two-dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise as ...
, the equation for non-vertical lines is often given in the ''
slope-intercept form
In mathematics, a linear equation is an equation that may be put in the form
a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coefficien ...
'':
where:
* ''m'' is the
slope
In mathematics, the slope or gradient of a line is a number that describes both the ''direction'' and the ''steepness'' of the line. Slope is often denoted by the letter ''m''; there is no clear answer to the question why the letter ''m'' is use ...
or
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
of the line.
* ''b'' is the
y-intercept
In analytic geometry, using the common convention that the horizontal axis represents a variable ''x'' and the vertical axis represents a variable ''y'', a ''y''-intercept or vertical intercept is a point where the graph of a function or relatio ...
of the line.
* ''x'' is the
independent variable of the function .
The slope of the line through points
and
, when
, is given by
and the equation of this line can be written
.
Parametric equation
Parametric equations are also used to specify lines, particularly in those in
three dimensions
Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informa ...
or more because in more than two dimensions lines ''cannot'' be described by a single linear equation.
In three dimensions lines are frequently described by parametric equations:
where:
* ''x'', ''y'', and ''z'' are all functions of the independent variable ''t'' which ranges over the real numbers.
* (''x''
0, ''y''
0, ''z''
0) is any point on the line.
* ''a'', ''b'', and ''c'' are related to the slope of the line, such that the direction
vector
Vector most often refers to:
*Euclidean vector, a quantity with a magnitude and a direction
*Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematic ...
(''a'', ''b'', ''c'') is parallel to the line.
Parametric equations for lines in higher dimensions are similar in that they are based on the specification of one point on the line and a direction vector.
As a note, lines in three dimensions may also be described as the simultaneous solutions of two
linear equations
such that
and
are not proportional (the relations
imply
). This follows since in three dimensions a single linear equation typically describes a
plane
Plane(s) most often refers to:
* Aero- or airplane, a powered, fixed-wing aircraft
* Plane (geometry), a flat, 2-dimensional surface
Plane or planes may also refer to:
Biology
* Plane (tree) or ''Platanus'', wetland native plant
* ''Planes' ...
and a line is what is common to two distinct intersecting planes.
Hesse normal form
The ''normal form'' (also called the ''Hesse normal form'', after the German mathematician
Ludwig Otto Hesse
Ludwig Otto Hesse (22 April 1811 – 4 August 1874) was a German mathematician. Hesse was born in Königsberg, Prussia, and died in Munich, Bavaria. He worked mainly on algebraic invariants, and geometry. The Hessian matrix, the Hesse norm ...
), is based on the ''
normal Normal(s) or The Normal(s) may refer to:
Film and television
* ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson
* ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie
* ''Norma ...
segment'' for a given line, which is defined to be the line segment drawn from the
origin
Origin(s) or The Origin may refer to:
Arts, entertainment, and media
Comics and manga
* ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002
* ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
perpendicular to the line. This segment joins the origin with the closest point on the line to the origin. The normal form of the equation of a straight line on the plane is given by:
where
is the angle of inclination of the normal segment (the oriented angle from the unit vector of the -axis to this segment), and is the (positive) length of the normal segment. The normal form can be derived from the standard form
by dividing all of the coefficients by
Unlike the slope-intercept and intercept forms, this form can represent any line but also requires only two finite parameters,
and , to be specified. If , then
is uniquely defined modulo . On the other hand, if the line is through the origin (), one drops the term to compute
and
, and it follows that
is only defined modulo .
Other representations
Vectors
The vector equation of the line through points A and B is given by
(where λ is a
scalar).
If a is vector OA and b is vector OB, then the equation of the line can be written:
.
A ray starting at point ''A'' is described by limiting λ. One ray is obtained if λ ≥ 0, and the opposite ray comes from λ ≤ 0.
Polar coordinates
In a
Cartesian plane
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
,
polar coordinates
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to th ...
are related to
Cartesian coordinates by the parametric equations:
In polar coordinates, the equation of a line not passing through the
origin
Origin(s) or The Origin may refer to:
Arts, entertainment, and media
Comics and manga
* ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002
* ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
—the point with coordinates —can be written
with and
Here, is the (positive) length of the
line segment perpendicular to the line and delimited by the origin and the line, and
is the (oriented) angle from the -axis to this segment.
It may be useful to express the equation in terms of the angle
between the -axis and the line. In this case, the equation becomes
with and
These equations can be derived from the
normal form of the line equation by setting
and
and then applying the
angle difference identity for sine or cosine.
These equations can also be proven
geometrically by applying
right triangle definitions of sine and cosine to the
right triangle
A right triangle (American English) or right-angled triangle ( British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right a ...
that has a point of the line and the origin as vertices, and the line and its perpendicular through the origin as sides.
The previous forms do not apply for a line passing through the origin, but a simpler formula can be written: the polar coordinates
of the points of a line passing through the origin and making an angle of
with the -axis, are the pairs
such that
Projective geometry
In many models of
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
, the representation of a line rarely conforms to the notion of the "straight curve" as it is visualised in Euclidean geometry. In
elliptic geometry
Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
we see a typical example of this.
In the spherical representation of elliptic geometry, lines are represented by
great circles of a sphere with diametrically opposite points identified. In a different model of elliptic geometry, lines are represented by Euclidean
planes passing through the origin. Even though these representations are visually distinct, they satisfy all the properties (such as, two points determining a unique line) that make them suitable representations for lines in this geometry.
The "shortness" and "straightness" of a line, interpreted as the property that the
distance
Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
along the line between any two of its points is minimized (see
triangle inequality
In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side.
This statement permits the inclusion of degenerate triangles, but ...
), can be generalized and leads to the concept of
geodesics in
metric space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general set ...
s.
Extensions
Ray
Given a line and any point ''A'' on it, we may consider ''A'' as decomposing this line into two parts.
Each such part is called a ray and the point ''A'' is called its ''initial point''. It is also known as half-line, a one-dimensional
half-space. The point A is considered to be a member of the ray. Intuitively, a ray consists of those points on a line passing through ''A'' and proceeding indefinitely, starting at ''A'', in one direction only along the line. However, in order to use this concept of a ray in proofs a more precise definition is required.
Given distinct points ''A'' and ''B'', they determine a unique ray with initial point ''A''. As two points define a unique line, this ray consists of all the points between ''A'' and ''B'' (including ''A'' and ''B'') and all the points ''C'' on the line through ''A'' and ''B'' such that ''B'' is between ''A'' and ''C''. This is, at times, also expressed as the set of all points ''C'' on the line determined by ''A'' and ''B'' such that ''A'' is not between ''B'' and ''C''. A point ''D'', on the line determined by ''A'' and ''B'' but not in the ray with initial point ''A'' determined by ''B'', will determine another ray with initial point ''A''. With respect to the ''AB'' ray, the ''AD'' ray is called the ''opposite ray''.
Thus, we would say that two different points, ''A'' and ''B'', define a line and a decomposition of this line into the
disjoint union
In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A ( ...
of an open segment and two rays, ''BC'' and ''AD'' (the point ''D'' is not drawn in the diagram, but is to the left of ''A'' on the line ''AB''). These are not opposite rays since they have different initial points.
In Euclidean geometry two rays with a common endpoint form an
angle
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle.
Angles formed by two rays lie in the plane that contains the rays. Angles a ...
.
The definition of a ray depends upon the notion of betweenness for points on a line. It follows that rays exist only for geometries for which this notion exists, typically
Euclidean geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
or
affine geometry
In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle.
As the notion of '' parallel lines'' is one of the main properties that is ...
over an
ordered field
In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered fiel ...
. On the other hand, rays do not exist in
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
nor in a geometry over a non-ordered field, like the
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s or any
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
.
Line segment
A
line segment is a part of a line that is bounded by two distinct end points and contains every point on the line between its end points. Depending on how the line segment is defined, either of the two end points may or may not be part of the line segment. Two or more line segments may have some of the same relationships as lines, such as being parallel, intersecting, or skew, but unlike lines they may be none of these, if they are
coplanar
In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. How ...
and either do not intersect or are
collinear
In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned o ...
.
Number line
A point on number line corresponds to a
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
and vice versa. Usually,
integers
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
are evenly spaced on the line, with positive numbers are on the right, negative numbers on the left. As an extension to the concept, an
imaginary line
In general, an imaginary line is usually any sort of geometric line that has only an abstract definition and does not physically exist. In fact, they are used to properly identify places on a map.
Some outside geography do exist, such as th ...
representing
imaginary numbers
An imaginary number is a real number multiplied by the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square of an imaginary number is . Fo ...
can be drawn perpendicular to the number line at zero.
[.] The two lines forms the
complex plane, a geometrical representation of the set of
complex numbers
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
.
In graphics design
See also
*
Affine transformation
*
Curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
*
Distance between two parallel lines
The distance between two parallel
Parallel is a geometric term of location which may refer to:
Computing
* Parallel algorithm
* Parallel computing
* Parallel metaheuristic
* Parallel (software), a UNIX utility for running programs in paral ...
*
Distance from a point to a line In Euclidean geometry, the distance from a point to a line'' is the shortest distance from a given point to any point on an infinite straight line. It is the perpendicular distance of the point to the line, the length of the line segment which join ...
*
Imaginary line (mathematics)
In complex geometry, an imaginary line is a straight line that only contains one real point. It can be proven that this point is the intersection point with the conjugated line.
It is a special case of an imaginary curve.
An imaginary line is ...
*
Incidence (geometry) In geometry, an incidence relation is a heterogeneous relation that captures the idea being expressed when phrases such as "a point ''lies on'' a line" or "a line is ''contained in'' a plane" are used. The most basic incidence relation is that betw ...
*
Line segment
*
Generalised circle
In geometry, a generalized circle, also referred to as a "cline" or "circline", is a straight line or a circle. The concept is mainly used in inversive geometry, because straight lines and circles have very similar properties in that geometry and ...
*
Locus
Locus (plural loci) is Latin for "place". It may refer to:
Entertainment
* Locus (comics), a Marvel Comics mutant villainess, a member of the Mutant Liberation Front
* ''Locus'' (magazine), science fiction and fantasy magazine
** ''Locus Award' ...
*
Plane (geometry)
In mathematics, a plane is a Euclidean ( flat), two-dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise as ...
*
Polyline
In geometry, a polygonal chain is a connected series of line segments. More formally, a polygonal chain is a curve specified by a sequence of points (A_1, A_2, \dots, A_n) called its vertices. The curve itself consists of the line segments co ...
References
External links
*
Equations of the Straight Lineat
Cut-the-Knot
{{DEFAULTSORT:Line (Geometry)
Elementary geometry
Analytic geometry
Mathematical concepts