Diiminopyridine Synthesis
   HOME

TheInfoList



OR:

Diiminopyridines (DIP, also known a pyridine diimines, PDIs) are a class of
diimine Diimines are organic compounds containing two imine (RCH=NR') groups. Common derivatives are 1,2-diketones and 1,3-diimines. These compounds are used as ligands and as precursors to heterocycles. Diimines are prepared by condensation reactions ...
ligands. They featuring a
pyridine Pyridine is a basic heterocyclic organic compound with the chemical formula . It is structurally related to benzene, with one methine group replaced by a nitrogen atom. It is a highly flammable, weakly alkaline, water-miscible liquid with a d ...
nucleus with
imine In organic chemistry, an imine ( or ) is a functional group or organic compound containing a carbon–nitrogen double bond (). The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bo ...
sidearms appended to the 2,6–positions. The three
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
centres bind metals in a tridentate fashion, forming pincer complexes. Diiminopyridines are notable as
non-innocent ligand In chemistry, a (redox) non-innocent ligand is a ligand in a metal complex where the oxidation state is not clear. Typically, complexes containing non-innocent ligands are redox active at mild potentials. The concept assumes that redox reactions ...
that can assume more than one oxidation state. Complexes of DIPs participate in a range of chemical reactions, including ethylene polymerization, hydrosilylation, and hydrogenation.


Synthesis and properties of DIP ligands

Many DIPs have been prepared. They are synthesized by
Schiff base In organic chemistry, a Schiff base (named after Hugo Schiff) is a compound with the general structure ( = alkyl or aryl, but not hydrogen). They can be considered a sub-class of imines, being either secondary ketimines or secondary aldimine ...
condensation of commercially available 2,6-diacetylpyridine or 2,6-diformylpyridine with two equivalents of substituted
aniline Aniline is an organic compound with the formula C6 H5 NH2. Consisting of a phenyl group attached to an amino group, aniline is the simplest aromatic amine In organic chemistry, an aromatic amine is an organic compound consisting of an aroma ...
s. Using substituted anilines, complexes one can obtain DIPs with diverse steric environments. Commonly used bulky anilines are 2,4,6-trimethylaniline and 2,6-diisopropylaniline. Unsymmetric variations have been established by successive condensation of different anilines. The dicarbonyl portion of the backbone can be further modified, as with 2,6-dipyridecarboxaldehyde and 2,6-dibenzoylpyridine. Most commonly, variations in the DIP arise from changes in the anilines. :


Effect of steric bulk

Depending on its steric bulk, DIP ligands form complexes of 2:1 and 1:1 ratios, M(DIP)Lx and M(DIP)2, respectively. The 2:1 complexes occur for unhindered DIP ligands. Although such complexes are coordinatively saturated, they have been studied for their electronic and structural properties. Formation of 2:1 complexation is suppressed with bulky DIP ligands. Complexes of the type M(DIP)Ln exhibit diverse reactivity.


Fe and Co complexes

The reduction of the Fe(II)(DIP)X2 with
sodium amalgam Sodium amalgam, commonly denoted Na(Hg), is an alloy of mercury and sodium. The term amalgam is used for alloys, intermetallic compounds, and solutions (both solid solutions and liquid solutions) involving mercury as a major component. Sodium amal ...
under nitrogen yields a square-pyramidal bis(nitrogen) complex Fe(II)(DIP)(N2)2. This complex is a useful precursor to other derivatives by exchange of the dinitrogen ligands, e.g. with H2 and CO, to give the monohydrogen or dicarbonyl complexes. Aryl
azide In chemistry, azide is a linear, polyatomic anion with the formula and structure . It is the conjugate base of hydrazoic acid . Organic azides are organic compounds with the formula , containing the azide functional group. The dominant applic ...
s give imido complexes. Fe(DIP)(N2)2 is a precursor to highly active catalysts for
hydrosilylation Hydrosilylation, also called catalytic hydrosilation, describes the addition of Si-H bonds across unsaturated bonds."Hydrosilylation A Comprehensive Review on Recent Advances" B. Marciniec (ed.), Advances in Silicon Science, Springer Science, 2009 ...
and
hydrogenation Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a Catalysis, catalyst such as nickel, palladium or platinum. The process is commonly employed to redox, reduce or S ...
reactions. Dissociation of N2 from Fe(DIP)(N2)2 results in binding of the anilino arene in an η6-fashion. This binding mode may play a role in the catalytic hydrogenation cycle. : The reactivity of cobalt- and iron-DIP complexes are similar. Cobalt DIP complexes with
azide In chemistry, azide is a linear, polyatomic anion with the formula and structure . It is the conjugate base of hydrazoic acid . Organic azides are organic compounds with the formula , containing the azide functional group. The dominant applic ...
ligands have been shown to lose N2 to give reactive
nitrido complex Metal nitrido complexes are coordination compounds and metal clusters that contain an atom of nitrogen bound only to transition metals. These compounds are ''molecular'', i.e. discrete in contrast to the polymeric, dense nitride materials that ar ...
es that undergo C-H activation of
benzylic In organic chemistry, benzyl is the substituent or molecular fragment possessing the structure . Benzyl features a benzene ring () attached to a methylene group () group. Nomenclature In IUPAC nomenclature, the prefix benzyl refers to a subst ...
sites of the aryl substituents. The resulting cyclometalated amide adopt a roughly planar geometry.


Noninnocence of DIP complexes

The highly conjugated ligand framework of bis(imino)pyridine stabilizes metals in unusual
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
s. The ability of the neutral complex to accept up to three electrons leads to ambiguity about the oxidation states of the metal center. The complex Fe(DIP)(N2)2 complex is ostensibly a 18e complex, consisting of Fe(0) with five 2-electron ligands.
Mössbauer spectroscopy Mössbauer spectroscopy is a spectroscopic technique based on the Mössbauer effect. This effect, discovered by Rudolf Mössbauer (sometimes written "Moessbauer", German: "Mößbauer") in 1958, consists of the nearly recoil-free emission and abso ...
indicates, however, that this complex is better described as a ferrous derivative of DIP2−. This assignment is corroborated by the high frequency of the νNN vibration in the
infrared spectrum Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
, which is more consistent with Fe(II). Thus, reduction of Fe(DIP)Br2 is ligand-centered, not Fe-centered. This non-innocent behavior allows iron-DIP complexes to participate in 2e
redox reaction Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
s, which is a pattern more usually seen for complexes of
platinum group metal The platinum-group metals (abbreviated as the PGMs; alternatively, the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs)) are six noble, precious metallic elements clustered t ...
s.


Catalytic reactions of M-DIP complexes

The catalytic properties of DIP complexes of Fe, Co, and Ni have attracted much attention. In principle, catalyst derived from "base metals" are preferred to noble transition metal catalysis due to low environmental impact and cost effectiveness. Furthermore, owing to its modular synthesis, the DIP ligand is easily modifiable allowing diversity in ligand screening. Complexes of the type M(DIP)Xn serve as precatalysts for ethylene polymerization. The precatalysts are activated by treatment with
methylaluminoxane Methylaluminoxane, commonly called MAO, is a mixture of organoaluminium compounds with the approximate formula (Al(CH3)O)''n''. It is usually encountered as a solution in (aromatic) solvents, commonly toluene but also xylene, cumene, or mesitylene ...
(MAO), which serves as a co-catalyst. Activities for 2,6-bis(imino)pyridine iron complexes are often comparable to or greater than group 4
metallocene A metallocene is a compound typically consisting of two cyclopentadienyl anions (, abbreviated Cp) bound to a metallic element, metal center (M) in the oxidation state II, with the resulting general formula Closely related to the metallocenes are ...
s. The aryl substituents greatly affect the products. Small aryl substituents allow for highly selective production of oligomeric α-olefins, whereas bulky groups provide strictly linear, high molecular weight polyethylene. Silica-supported and homogeneous catalysts have been reported. Traditionally catalyzed by Pt and other precious metals, hydrosilylation is also catalyzed by Fe-DIP complexes. Reactions proceed under mild conditions, show anti- Markovnikov selectiviity, and tolerate diverse functional groups. Depending on the steric properties of the ligand, Fe-DIP complexes catalyze hydrogenation of terminal olefins.


Variations of DIP ligands

In
N-heterocyclic carbene A persistent carbene (also known as stable carbene) is a type of carbene demonstrating particular stability. The best-known examples and by far largest subgroup are the ''N''-heterocyclic carbenes (NHC) (sometimes called Arduengo carbenes), for ex ...
variations of the diiminopyridine complex, the pyridine or imine substituents is replaced with an NHC group. The aryl substituted bis(imino)NHC complexes produce tridentate ligands, while the pyridine exchanged NHC forms exclusively bidentate complexes. This is presumably due to the additional strain from the 5 member ring of the central carbene.


References

{{Reflist Coordination complexes Tridentate ligands Pyridines Imines