Digital Time-Stamping Service
   HOME

TheInfoList



OR:

Trusted timestamping is the process of securely keeping track of the creation and modification time of a document. Security here means that no one—not even the owner of the document—should be able to change it once it has been recorded provided that the timestamper's integrity is never compromised. The administrative aspect involves setting up a publicly available, trusted timestamp management infrastructure to collect, process and renew timestamps.


History

The idea of timestamping information is centuries old. For example, when
Robert Hooke Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
discovered Hooke's law in 1660, he did not want to publish it yet, but wanted to be able to claim priority. So he published the
anagram An anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once. For example, the word ''anagram'' itself can be rearranged into ''nag a ram'', also the word ...
''ceiiinosssttuv'' and later published the translation ''ut tensio sic vis'' (Latin for "as is the extension, so is the force"). Similarly,
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
first published his discovery of the phases of Venus in the anagram form. Sir Isaac Newton, in responding to questions from Leibniz in a letter in 1677, concealed the details of his "fluxional technique" with an anagram: :''The foundations of these operations is evident enough, in fact; but because I cannot proceed with the explanation of it now, I have preferred to conceal it thus: 6accdae13eff7i3l9n4o4qrr4s8t12ux. On this foundation I have also tried to simplify the theories which concern the squaring of curves, and I have arrived at certain general Theorems.'' Trusted digital timestamping has first been discussed in literature by
Stuart Haber Stuart Haber is an American cryptographer and computer scientist, known for his contributions in cryptography and privacy-preserving technologies and widely recognized as the co-inventor of the blockchain. His 1991 paper "How to Time-Stamp a Dig ...
and W. Scott Stornetta.


Classification

There are many timestamping schemes with different security goals: * PKI-based – timestamp token is protected using PKI
digital signature A digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature, where the prerequisites are satisfied, gives a recipient very high confidence that the message was created b ...
. * Linking-based schemes – timestamp is generated in such a way that it is related to other timestamps. * Distributed schemes – timestamp is generated in cooperation of multiple parties. * Transient key scheme – variant of PKI with short-living signing keys. * MAC – simple secret key based scheme, found in
ANSI ASC X9.95 Standard The ANSI X9.95 standard for trusted timestamps expands on the widely used {{IETF RFC, 3161 - Internet X.509 Public Key Infrastructure Time-Stamp Protocol by adding data-level security requirements that can ensure data integrity against a reliable ...
. * Database – document hashes are stored in trusted archive; there is online lookup service for verification. * Hybrid schemes – the linked and signed method is prevailing, see X9.95. Coverage in standards: For systematic classification and evaluation of timestamping schemes see works by Masashi Une.


Trusted (digital) timestamping

According to the RFC 3161 standard, a trusted timestamp is a timestamp issued by a Trusted Third Party (TTP) acting as a Time Stamping Authority (TSA). It is used to prove the existence of certain data before a certain point (e.g. contracts, research data, medical records, ...) without the possibility that the owner can backdate the timestamps. Multiple TSAs can be used to increase reliability and reduce vulnerability. The newer
ANSI ASC X9.95 Standard The ANSI X9.95 standard for trusted timestamps expands on the widely used {{IETF RFC, 3161 - Internet X.509 Public Key Infrastructure Time-Stamp Protocol by adding data-level security requirements that can ensure data integrity against a reliable ...
for trusted timestamps augments the RFC 3161 standard with data-level security requirements to ensure data integrity against a reliable time source that is provable to any third party. This standard has been applied to authenticating digitally signed data for regulatory compliance, financial transactions, and legal evidence.


Creating a timestamp

The technique is based on digital signatures and hash functions. First a hash is calculated from the data. A hash is a sort of digital fingerprint of the original data: a string of bits that is practically impossible to duplicate with any other set of data. If the original data is changed then this will result in a completely different hash. This hash is sent to the TSA. The TSA concatenates a timestamp to the hash and calculates the hash of this concatenation. This hash is in turn
digitally signed A digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature, where the prerequisites are satisfied, gives a recipient very high confidence that the message was created b ...
with the private key of the TSA. This signed hash + the timestamp is sent back to the requester of the timestamp who stores these with the original data (see diagram). Since the original data cannot be calculated from the hash (because the hash function is a one way function), the TSA never gets to see the original data, which allows the use of this method for confidential data.


Checking the timestamp

Anyone trusting the timestamper can then verify that the document was ''not'' created ''after'' the date that the timestamper vouches. It can also no longer be repudiated that the requester of the timestamp was in possession of the original data at the time given by the timestamp. To prove this (see diagram) the
hash Hash, hashes, hash mark, or hashing may refer to: Substances * Hash (food), a coarse mixture of ingredients * Hash, a nickname for hashish, a cannabis product Hash mark *Hash mark (sports), a marking on hockey rinks and gridiron football field ...
of the original data is calculated, the timestamp given by the TSA is appended to it and the hash of the result of this concatenation is calculated, call this hash A. Then the
digital signature A digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature, where the prerequisites are satisfied, gives a recipient very high confidence that the message was created b ...
of the TSA needs to be validated. This is done by decrypting the digital signature using public key of TSA, producing hash B. Hash A is then compared with hash B inside the signed TSA message to confirm they are equal, proving that the timestamp and message is unaltered and was issued by the TSA. If not, then either the timestamp was altered or the timestamp was not issued by the TSA.


Decentralized timestamping on the blockchain

With the advent of cryptocurrencies like
bitcoin Bitcoin ( abbreviation: BTC; sign: ₿) is a decentralized digital currency that can be transferred on the peer-to-peer bitcoin network. Bitcoin transactions are verified by network nodes through cryptography and recorded in a public distr ...
, it has become possible to get some level of secure timestamp accuracy in a decentralized and tamper-proof manner. Digital data can be hashed and the hash can be incorporated into a transaction stored in the
blockchain A blockchain is a type of distributed ledger technology (DLT) that consists of growing lists of records, called ''blocks'', that are securely linked together using cryptography. Each block contains a cryptographic hash of the previous block, a ...
, which serves as evidence of the time at which that data existed. For proof of work blockchains, the security derives from the tremendous amount of computational effort performed after the hash was submitted to the blockchain. Tampering with the timestamp would require more computational resources than the rest of the network combined, and cannot be done unnoticed in an actively defended blockchain. However, the design and implementation of Bitcoin in particular makes its timestamps vulnerable to some degree of manipulation, allowing timestamps up to two hours in the future, and accepting new blocks with timestamps earlier than the previous block. The decentralized timestamping approach using the blockchain has also found applications in other areas, such as in dashboard cameras, to secure the integrity of video files at the time of their recording, or to prove priority for creative content and ideas shared on social media platforms.C. Breitinger, B. Gipp. 2017
"VirtualPatent – Enabling the Traceability of Ideas Shared Online using Decentralized Trusted Timestamping"
in Proceedings of the 15th International Symposium of Information Science, Berlin, 2017.


See also

* Timestamp * Timestamping (computing) * Cryptography * Computer security *
Digital signature A digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature, where the prerequisites are satisfied, gives a recipient very high confidence that the message was created b ...
* Digital Postmarks *
Smart contract A smart contract is a computer program or a transaction protocol that is intended to automatically execute, control or document events and actions according to the terms of a contract or an agreement. The objectives of smart contracts are the re ...
* CAdES – CMS Advanced Electronic Signature * PAdES – PDF Advanced Electronic Signature * XAdES – XML Advanced Electronic Signature


References


External links

* Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP) * {{IETF RFC, 3628, link=no Policy Requirements for Time-Stamping Authorities (TSAs)
Decentralized Trusted Timestamping (DTT) using the Crypto Currency Bitcoin

ANSI ASC X9.95 Standard for Trusted Time Stamps

ETSI TS 101 861 V1.4.1
Electronic Signatures and Infrastructures (ESI); Time stamping profile
ETSI TS 102 023 V1.2.2
Electronic Signatures and Infrastructures (ESI); Policy requirements for time-stamping authorities
Analysis of a Secure Time Stamp Device
(2001) SANS Institute
Implementation of TSP Protocol
CMSC 681 Project Report, Youyong Zou Time Authentication methods